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The central theme involved in this work is the continuing study of

certain fundamental features associated with the nonlinear wave

propagation arising in and motivated by physical problems. The usefulness

of the work is attested to by the varied applications, and wide areas of

interest in physics, engineering and mathematics. The work accomplished

involves wave propagation in a number of areas including fluid mechanics,

plasma physics, theoretical physics, statistical mechanics, nonlinear

optics,multidimensional solitons, multidimensional inverse problems,

Painleve equations, direct linearizations of certain nonlinear wave

*- equations, DBAR problems, Riemann-Hilbert boundary value problems, -

algebraic methods and symnetry analysis of multidimensional systems,

differential geometry, etc. Of particular interest to the Navy is the

recent discovery that many of the equations describing ship hydrodynamics

in channels of finite depth obey nonlinear equations which have been

studied extensively by our group.

(1) Research Objectives

The continuing aspects of the work performed under this grant

has been the study of the nonlinear wave phenomena associated with

physically significant systems. As mentioned above, this work has

important applications in fluid dynamics (e.g. long waves in stratified

fluids, solitons generated by ships),nonlinear optics (e.g. self-induced

transparency, and self-focussing of light), and mathematical physics as

well as important consequences in mathematics. Individuals working with

us and hence partially associated with this grant include: Dr. Peter

Clarkson, Postdoctoral Research Associate in Mathematics and Computer Science,

* -- S. * ." _- " ." "**. _ " - .*" ..S •* . -. ., . • • -.



Dr. Daniel Bar Yaacov, Postdoctoral Research Associate in Mathematics and

Computer Science, Mr. Ugurhan Mugan, a graduate student in Mathematics and

Computer Science, Mr. Vassilis Papageorgiou, a graduate student in

Mathematics and Computer Science and Mr. Rogelio Balart, a graduate

student in Mathematics and Computer Science. Recent publications

supported by this research grant are enclosed.

Areas of Study Include:

Solutions of nonlinear multidimensional systems

arising in Physics

Inverse problems, especially in multidimensions

and DBAR methodology

Riemann-Hilbert boundary value problems

and inverse problems

Solitons in multidimensional systems, solitons

generated by ships in narrow channels

IST for nonlinear singular integro-differential equations;

the Benjamin-Ono equation, the intermediate Long Wave

Equation, the Sine-Hilbert equation, multidimensional

generalizations.

Discrete IST and numerical simulations

Painleve equations

Focussing singularities in nonlinear wave propagation

Applications to surface waves, internal waves, shear flows,

nonlinear optics, S.I.T., relativity etc.
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Direct linearizing methods for nonlinear evolutions equations

Multidimensional generalizations of the Sine-Gordon and wave

equations arising in differential geometry

Algebraic methods and symmetries of multidimensional

nonlinear evolution equations

Solutions t6 semiperiodic multidimensional equations.
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Physica 18D (1986) 223-241
North-Holland. Amsterdam

M ULTIDIMIENSIONAL NONLINEAR EVOLUTION EQUATIONS
AND LNVERSE SCATTERING

Mark J. ABLOWITZ
Department of Mathematics and Computer Science. Clarkson un/verstiv. Potsdam. Ne% York 13676. USA

and

Adrian I. NACHMAN
Department of Mathematics. Untwersin- of Rochester. Rochester, Ne York 1462-, USA

In this paper we will review some recent work done in the field of integrable nonlinear evoluuon equations and inverse
scattering. We will concentrate on the basic undertving areas and refer interested readers to sutable references for complete
details: specifically background material can be found in various texts on this subject (e.g. [1) by Ablowitz and Seguri More
recent references will be given as necessary. The outline of the paper is as follows,

1) Introductory remarks
2) A discussion of two separate but related issues. Namely. (a) solving certain nonlinear evolution equauons in infinite space:

and (b) inverse scattering. These are important problems having many physical applications. Moreover. they are related to each
other by what we refer to as the Inverse Scattenng Transform IST).

3) At the end of the paper we will make some remarks on the possibility of solving nonlinear evolution equauons in high
dimensions (i.e. equations with more than two spatial and one time variable) by using the IST method as we nok understand it.

1. Introduction

The prototype nonlinear evolution equations for our purposes will be the Korteweg-deVries (KdV)
equation

u, 6uu, u. , =0 (1)

in one spatial dimension, and the Kadomtsev-Petviashvili (KP) equation

(u, - 6uu, - u,,),.) -3a zu (2)

in two spatial dimensions. (It turns out that the sign of a: is critical: there being two cases labeled by KPI:
ICZ -1: KP =a - =1.)

Historically speaking, the KdV equation was the first equation solved (on the infinite line) by use of
inverse scattering. Subsequently numerous other equations of physical interest in one spatial dimension
were solved e.g. nonlinear Schrodinger. sine-Gordon. three-wave interaction, modified KdV. Boussinesq.....
These equations are all partial differential equations. In fact. there are other equations which are discrete in
space and continuous in time (differential-difference) and equations discrete in both space and time which
also may be solved by IST. One other class of equations in one spatial and one time dimension fit into this
scheme, namely nonlinear singular integro-differential equations: with the prototype being the so-called

0167-2789/86/103.50 " Elsevier Science Publishers BA.
(North-Holland Physics Publishing Division)
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.24 MJ. Ablowit: and A.!. Nachman / Multidimensional nonlinear evolution equations and inverse scattering

Intermediate Long Wave equation [2a],

I Ir "
*u. - 2 u Tu-1- coth (

As 8 - 0. (3) tends to the KdV equation (with appropriate coefficients) and as -. c it tends to the
so-called Benjamin-Ono equation

u, -uu .+ (Hu) 0-. H. - u -- (4)

The method to solve (4) was recently found and it has certain features in common with some two-dimen-
sional problems - specifically KP I (see [2b]).

It should also be remarked that some ode's can also be solved by similar methods; specifically the
classical equations of Painleve (see for example [31). We will not dwell on this aspect any further in this
lecture.

In two spatial one time dimension the K.P equation is only one of the equations that can be solved in
infinite space. However. an effective method was not realized until a short time ago. The important new
idea of treating inverse scattering as a "8 problem" (see [9a]) was used in [4] to solve KP1 and paved the
way for the development of the IST for a wide class of equations in 2 1 1 dimensions (a review of this and
related work can be found in [Sa. b]). It should be mentioned that earlier work on KP, had been done by
Manakov [6a] and more recently by Fokas and Ablowitz [6b] and on the multidimensional three-wave
equation by Cornille [7a] and Kaup [7b]. KP, and others like it depart significantly from previous work
and its study has led us to develop a general method to do inverse scattering in n spatial dimensions as we
will indicate in this review (.see [8a.b,c]).

The concept of treating inverse scattering as a "8 problem" was originally discussed by Beals and
Coifman in their study of first order systems of differential equations [9a]. Beals and Coifman have also
recently considered multidimensional inverse scattering via 3 methods [9b].

It should be noted that important contributions in the study of multidimensional inverse scattering
associated with the tme-independent Schr6dinger problem have been made by Faddeev [10) and Newton
[11). In one dimension we also note the important contributions of Shabat [12a], Mikhailov [12b] and
Caudrey [12c]. Some of the work in this review is related to these studies although the methodology is
different.

2. Inverse scattering and ther inverse scattering transform

The method of solution by IST begins with the study of two compatible linear operators (Lax pairs)
(L depends on one or more "potentials" or functions which we call u)

- XL, (5)

t',- Mt. (6)

connected by the compatibility condition

L.-[L. M]- 0.

'-"-'N . . .. ...-

.- ... , .
L

" .' ' ', ,' "." ''u ," "" " " " " " " '",---- ""," " -"/ "'"v, "v''" " -, .io7,
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when the flow is isospectral. X, = 0. (7) is the nonlinear evolution equation to be solved. X, is a spectral

parameter. which as it turns out loses significance in spatial dimensions greater than one. L is a spatial
operator only: with time acting as a parameter. The parametric dependence in time is what allows us to
study the question of inverse scattering separately and then after this task is completed allows us to solve
the relevant nonlinear equation (7). For KdV the operators are

a: a

The reader can now verify that (7) yields (1). It should be noted that there are generalizations of (5)-(71.
but we shall not be concerned with that here.

The direct (or forward) scattering problem associated with L means given a potential. in a desired
function class, and solve for eigenfunctions corresponding to suitable initial or boundar. conditions.
Usually. appropriate eigenfunctions are defined in terms of an integral equation (e.g. via Green's
functions). From the eigenfunctions scattering coefficients, eigenvalues. etc. can be calculated. Call the set
of all such data obtainable from the solution of (5) S.

The inverse problem is as follows. Given some subset S of S (i) reconstruct the eigenfunctions and the
potential: (ii) characterize the analytical. algebraic, and/or topological constraints on the data in order to
find a potential in the desired function class.

In recent years significant strides forward have been made in regard to the solution of those inverse
problems motivated by the study of nonlinear evolution equations. Examples in one dimension are

I~ t "--=x)d"~J , uWJ(x) v ( x. X) scalar [see 9c]: .

dx" '  dx-

(iO "-=iXJ'-qv, v(x. X)).q(x) EC" J= diapg(J 1 . .. ='., [see 9d].

In rrmltidimensions examples are
"av

) o--"- c-u(x.Y)v=O, o=oRa--i, xER". YER. x= : dx [seeSa. Sc. 9b]:

(iv -. IL'- u(x)t,=hv [see10, I1, Sa. 8c. 9c]:
0t' 3 V .j

Cv) J-,j-- =qva, -=0  -iC , x-R'. YER: v,'qEC J.=diagJ' ..... J
i -i /

J :'- J/., ij (see 8b].

The inverse problem for (i) and (ii) may be written in a compact form. Namely solve

I.-,u )ix. k) =, (x. af k)) V( x, k)

on -(Z is an appropriate contour in the complex k-plane and I is a function depending exphciti on the
scattering data and a( k) is problem dependent) with

U - .a( k i. '( x. k I given on-

".1

."., . " " " ' , ' " " " " -" - " .. . . . . . .''' .. . " '-_ . . "-_ ,_.. - , ',
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and

,i.(x. k) meromorpic in k E C/T. (9)

_ (x. k) has a finite number of poles with locations specified: k ..... k,; and Resk.u -.,.(x. k) specified %
appropriately.

In (9). )(x. k is associated with an eigenfunction of the given operator. It is related to v(x. k)bv

c(x, k) - ju(x. k) ee~

where 0,,( x, k) is a concrete phase factor which depends on the unperturbed (potential zero) operator. The
parametric dependence X - ,(k) is explicitly given (chosen for convenience).

(9) is a variant of the usual Riemann-Hilbert factorization problem. The standard situation involves
finding p . analytic off f without any extra parameter such as x.

Corresponding to (i) and (ii above, the second order case is classical and has been studied by numerous
authors (a review of this appears in (1]). Although some work had been done for third order scalar
operators nevertheless it has only been within the past few years that the solution to the general nth order
case has been found. It should be noted that the matrix system (ii) above has also been studied in [12a-c].
A thorough analysis of the problems, including the case of complex diagonal elements of J appears in [9d].

To be concrete we shall given the results for the inverse problem associated with the one-dimensional
time-independent Schrbdinger equation: i.e. (i) above with n = 2. u(x) = -u12)(x). Let X(k - .k then
the scattering equation is

-k-u)c-0. - oc<x< . v e'" ,  (10)

- ik - =O. (11)

The relevant function ciass for u(x) is f'_c(1 x )iu! dx < x. v(x. k) has solutions (Jost functions)
which we denote by

Y( x. k)
ok = e (12a)

-(x.k) = ekx.

Functions with "nice" analytical properties are obtained byv multiplying by a suitable exponential factor:

- .V(x. k) =,eiz 1,
W(x " 1 .(1x02b)

The relationship

(.Y. k = .! x. -k (12c)

implies

N( x, k N= .\ x. - k e:'' (1d)

I-
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Completeness of these eigenfunctions requires

M(x. k) a(k)NV(xk) 'b(k)N(x, k),

or. using (12d),

M~x.k) Nx. k - rk e"'N(x -k)
a(k)

where r(k) -b(k)/a(k). The analyticitv of Mf(x. k). N(x. k) is deduced by studying the following
integral equations:

A(x, k) I- Gix - x'k) u(x')M(x', k) dx'. (12f)

.V(x.k)= G_ (xf G -x', k)u(x')N x',k) dx'. (12g)

where

C -being the contour below (-)/above - the singularities .~0. : k inside the integral (12h).
G ..(x.k) is analytic for Ink Z 0 and vanishes as k I - x. M(x. k). N( x. k) are therefore analytic for
Im k > 0, urn k < 0 respectively and tend to unity as jk I- c

The scattering coefficient a( k is also analytic for Im k > 0 and tends to unity as Ik 1- oc this can be
deduced from the fact that a( k) is a Wronskian of M. A'). a(.k) can vanish at a finite number of locations
in the upper half plane: k - k kIm k>O. Calling

k)M(.x. k)
-(A. k) =~, ) (121)

a(k)

we see that (9e) is a special case of (9) where ak)= -k. V(x. kV=r(k~ek~ The appropriate residue
statement is

Res u v.k)) c, ~k u_((, k)

* C being called the normalization constants.
It is worthwhile noung that when no poles (i.e. no eigenkvalues or boundstates) appear. then the

solvabilitv of (12e follows from the Aork of Gohberg and Krein [113 in which they prove the existence of
uniqueness of the solution of the cot-responding iemnann-Hilbert factorization problem (in a generic
sense).
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For completeness we list the integral equations for the eigenfunction and potential reconstruction:

N~~x~(X Ie~I - kkNi -k d (12k)

* NA,(x) =e:I -k ,i) j ($Nx~d 11

ax

1-ii

The solution of the initial value problem for suitably decaying functions u( x. k) of KdV is obtained b.,
noting that Thk.it rn k.e. This follows from the second linear operator M: see 6. 8. The
reconstruction of U(x. i then follows from the inverse problem. In the general case. the data rc.to k. in
9 also evolves simpl-y in time (e.z. I'.x. k. t) - I"(x. k.O)e'( when V'. w are scalars). Schematically we

have:

(Direct problem) (From M operator) (From inverCse problem)

u x, 0)= (.e.: 0) -" .Vx. k, 0)-V , r( ) ( x.k.i {)

The method of solution is what is usuall refer-red to as the Inverse Scattering Transform: IST. This
program has been carried oui for a surprisingly large number of phvsicall\, interesting equations in one
spatial dimension. In fac.). the onl equation in one spatial dimension mentioned above that does not have
an associated inverse problem of the form (9) is the Benjamiun-Ono equation (4. It shares with the KP.
equation an inverse problem of the nonlocal R-H form:

. "kk' V(- x. k'. k) d (113)

Next. we shall discuss the KP equation and its associated scattering operator L

a -t . U -X. v -0. 4

Note in 14) we have taken the eigenvalue X r e 0 without loss of generali (b the scaling property of u).
Since the anal.sis for the seneralization

here o a Io :. =x Go t R, is a natural extension of that in two dimensio s.
"e shall discuss this case. Scattering parameters arise in (15 b- looking for a function as u( x. i. k whe.

t. L e

hU -u = 0.

and k K aR - IK 1  C~ We shall consider c,~ 0. 0 , '

* .3 k..
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We look for a solution A(x. i. k) bounded for all x. and u-I as k, - c. The latter condition is a
convenient normalization. If we should consider I-) for -1 in analog% to the KP,, scattering problem.
we immediatelv notice that the dominant operator is the heat operator which is illposed as an initial value
problem. Even though we pose a boundan problem. immediately we are led to believe that in this case
there will be some type of unusual behavior. In fact in refs. [4. 8a it is shown that the bounded function g±
for m 0 rna, be analytic nowhere as a funLuon of k. Specifical)% !i = PjX. i. k k,). In particular jL is

constructed from the following equation. Given u( x. - 0 sufficiently rapidly at x. the direct probiem is

U - uu , (iS)

where

G Gx- x'. -' k R .k C)xdY.(IP

The Green's function G is obtained from

G~i.~k,~ 1 iC-../ e d~d7. C1 ~. 20a)

sien v k a

a . -O R 21 kR- . (20b

where SCxi= 1 for x >0. 0 for x < 01. In constructing (20) we have looked for a bounded Green's
function. and have taken the Fourier transform in both x and i.

Takine the c denvative of 1S with respect to K we find 3ak ( 3 ak, - 3k. 1):

CIL _GuLI) C
-U - q-=-. ( 2l.

3k k d k

The first term in is calculated directly using the definition of the Green's function (20).

3G=iuip k R Tkk.)( K )6(s, cdkR (22a)
0 R

where

" -e 0.

a u

and , 6 x .s h uua D. a ,.. : fi-m' , :r On ca{- r , e-.,t tnn - tkn he.:v t 122r c tor
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(20b) or on (20a) using the well-known fact

3k k ,2e)

From (22) one can readily calculate 84/dk, (assuming (18) has no homogeneous solutions),

S - c ' fe .. , k k .  -  )8(s())(x. , .k)d. (23)

(23) is found by noting that ag/k, is a suitable superposition over a fundamental solution
W(x, Y. k R. k 1 , ) satisfying

W(x, y. kR, k i ) - e iR k. .  
k I (uW). (24)

Using the svmmetry condition on the Green's function.

- -  )G(xy. kR, k) =G(x. . jk). on s() =0. (25)

allows us to find

W(x. Y, k R , k j.) - ei ..... kh.,, (,. ). p. k1 ). on s( ) = 0. (26)

and then (23) follows.
A special case of (23) is n = I whereupon i/ak, depends locally on ±. For n = 1. let k, k: then (23)

reduces to

S C sgn k R k e' A9 .A.. iGT(k R k. p)(x. y. (27) k).(
ak ICRI O

where 4. = -kR - ( 2 al/aR)kj. (27) is relevant to the solution of KP: KPII: I - 0, OR -1 (see [1]) and
KPI cl = 1. OR -- 0 (OR < 0) with the scaling kc = ktiOR (also see the discussion of the limit to the
time-dependent Schrbdinger equation later in this paper).

The above discussion is entirely within the context of the direct scattenng problem. However. it suggests
what the natural data might be for this problem. We shall call T(kR , kj, -) the inverse data.

The inverse problem is: ven T(kR, k1, .) construct Ux, .v. However. it is immediately transparent ,.
that there is a serious redundancy question. Namely T(kR. k1..) is a function of 3n parameters with one
restriction (the restriction is due to 6(s( )) in (23): i.e. T will be given as a function of 3n - 1 variables and
we wish to construct a function u(x. v) depending on n - I variables. But for n = 1. namely for the
problem in two spatial dimensions the difficulty disappears. As (27) shows T = T(kR. k. o1kR. kj)). hence
T is a function of two parameters as is u.

Using (23) there are numerous reconstruction formulae for u available. However. serious restnctions on
T must be imposed in order to obtain a function u depending only on x. v and vanishing at x. This is
part of the characterization question. i.e. which inverse data T( k R, k . c) are "admissible". %

One set of inversion formulae for .u is obtained from the generaiized Cauchv formula

4 k d -- dIRd. 2S
27 i kXk
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(Another, more symmetric inversion uses the Bochner-Martinelli formula but this is outside the scope of
the present review.) Applying this to our problem where M - 1. kl -c c (the first term is unity) we have

'~. ,x.1 -_ y ' kj.'k,

Ax. i. kR. kj) I -ff k k - dk,.dk. (29)

where we use the simplified notation kk, (kR ...... .... kR) and similarly for k . (29) is a linear
integral equation for (using 23)) the potential is constructed from

U(X. a fig (x v, k'R. k,)dk' dk' (30)

(30) is obtained by taking k - oc in (18) and (29) and companng the results.
It is clear that in general the nght-hand side of (30) will be a function of kR . i = 1.. j - 1.

- 1. n. One possible way of characterizing admissible data would be to require T(kR. k1. ) to be such
that the RHS of (30) be independent of these parameters. for all J. Such a requirement is analogous to
what Newton refers to as the "miracle" in the time-independent problem (see [11]). However. in this
formulation we can go further and give conditions directly on T(kR. kI. ). The importance of characteriz-
ing T(kR. k , J) directly not only has to do with understanding on which manifolds of kR. ki. can one
hope to reconstruct the potential. but also may indicate how one could in principle measure data so as to
produce local potentials in a stable manner.

For n > 1 the compatibility condition 6'A18k,3k, ;l/dk,8k ( ) leads to a nontrivial restriction
on T one which is nonlinear:

a,(T)= N. (T), (31a)

where

k k, (31)

\,I,[T](k.. ) =f[9E.- k.ft )(,-,') - (,,'- k , - ,)]b(s( '))T(kR. k,. $')T(J'. ki, )d '.

(3c)

In fact there is a change of variables which allows (31) to be put in a simplified form. Without loss of
generality we may consider the equations (31) with i= 1, i1 1. is obtained from i= I by straightforward
manipulation) then introduce new variables (X, w. ,)o c x R x R which parameterize the sphere

s(x .(X--. : .... X)

aIWnw. w 0%,~

kX, 7.,F k, = x -- ~ - j.
R !

S.q * * ***"

*_,,
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* Thus for w, * 0 there is a 1-1 map: (kR. k I. ) (x. w. w0) such that

K, k R. w 2 k I kR)/CR, (33a)

which for i 1, =2.,n yields

-j=--N(T)(xwwo). (34)n

Again using the generalized Cauchy formula we have

J- T(X,w 0  ~ wf wJ ) dX'~ dx'I = (w. wo), (35)

where i~w, w.) =Ytu(x, y)) is the Fourier Transform of u(x, y ) with respect to w, KO. The term &(w. w,))
is the boundary value of T(X, w, w.) as XJ- oz. This can be seen from the definition of T(X, w, woJ (22b)
and the fact that from (32) x, -~ oc implies k, - o and hence ys - 1. (35) leads both to admissibility
criteria as well as reconstruction of u(x, y ). Given T(k R. k 1, ~)one computes -or by quadratures. We also
reiterate the fact that the formula (35) assumes no homogeneous solutions to (18). We conjecture 18a] that if
-f is independent of X and j and has suitable decay properties for large w. wo0 then T is admissible. The
potential is recovered from

u(X. ~)=J; ( (Kw. w0 )). (36)

where F-' denotes the inverse Fourier transform. Moreover. we see that reconstruction follows purely by
quadratures given T(k R, k 1, ) on s(~ 0.

It turns out that the physically interesting cases of the time-dependent and time-independent
Schrbdinger equation in n dimensions fall out as special cases of the above result. In what follows we
discuss these cases both as limits (reductions) of the above results and then brieflyN indicate how the
formulae can be derived without recourse to any imit.

First consider the case a - i. i.e. a,= . O-0- (OR < 0); kR, k = kI/OR. Then G(x, y. kR. k I)
GL(-X- k kR, kRp) (in what follows we drop the symbol )

(37) can be directly verified. i.e.

2
YGL(X- y. kR. k1) i Sx6v..=1' 2ikR ~ (38)

and hence A - PL where A, satisfies

YA'L uAL and A.(X, Y-kR. k,)I)=-LiM (39a.b

-2.......
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Thus GL(x. v. kR , k ) provides a family of Green's functions parameterized by kI which has the parameter
entering via "boundary conditions" (i.e. through the integral equation (39b) since .Y depends on k RF only).

Ask -- -c.

GL(x. y, kr.k 1 )- -iC.sgn (y) Ade ..- )'... e( . (40)

hence GL(x, y, k r, k - C C) -* G (L= ))(x. y, k R. k) where G )J(x, y, kR, k) are functions of kR.
Similarly -L " - ML=(x, y. k'R, kI). Here k, (k 1,.. k . _ k 1 ..... k,). Then by direct calcula-
tion (altemativel' by limits):

k --- ic k, -kR)8(SL() k1 )d (41 a)
ak f

where

YL(X, kR, k,, ) = (x - 2yk,).(i- kR).

TL(kR, k,. ff) =ffe - io
-x ' 'k"k (uj)(x. J% kR. kl)dxdy : L ( + k,)- (kR 4. k).

(41b"

The reconstruction formula for A. is then given by

.- 0(,k, -_9(k k, ),1 .

P(x. y. kRpk)-1 - - .. ) . k')dk dki,.

(42)

where k' m (kR,... kR-1, kk. kR ........ k k) and similarl, for k ,.with (41) inserted into (42). (42) can
be derived directly by making use of the analytic properties of 9 L at k , x (or follows by limits). To
show this by direct means note

Thus by projection

,.kR k) I .P- (x, kR, kl)dkl (44a)

where

g(k ) dk (44b)k;-(k. ioj
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and the usual projectors satisfying (P -P-)g(kR)=g(k ). Carrying out the integral in (43) from

- to k. and using the above boundar' conditions at k = - yields '

,u x.vkR kl)=I-P- _f d3 . dk{-- . k, (45a)

P - -:p OP, 'ddk t  4b

(with the obvious notation). (45b) is equivalent to (42). The analogue of (31) is obtained from the
compatibility condition (alternatively va limits)

akO 8k ak' ) . L , (46a) "
8k, 8k1 = 8k 1 8k1  ').,2TL =Nj,, TL). 4a

where

,)

(46b)
.L - c( ,- =,) ( , - Tk.) -(iT, k )d

Definin2 new variables (X. w0 ),

."wx WI w w, w wo

2 %- =w,

IF-Xk -WIXJI, (47)

WI ,WO W WOK,

2 o 2 2 2 w

we have (taking = I in (46))

aTL = iA"L------- - !~ "[TL ](48)/

and the analogue of (35)" X _  _' X,,
. - i x0-x IVi [T,( X'W. . v)° dx] =t d W'cl

XRXRj XRX'

(491

.4

.. . "I - ., -- " .-. ...-... :c . ' _'- - : : i " i f 
" 2 : -

i" .. " " -" " ' .... " '"--- . .. -. " " U-." ' "," '" "' '- -,



?7.

4.J. A blo.t: and .4.I. Nachman /Muiidimensional non jinear e, oituion equanons and incerse scarering 235

Admissible data TI are such that the LHS of (49) will be independent of x, and j and have appropriate
decay in w. w0 . (49) can be derived directly using the fact that lim, _,- _.(TL - t) is. as a function of XR •
the boundary value of an analytic function of XR in the lower (X R, "--c)/upper (XR, - X
half-plane and tending to zero as XR " c. The argument is identical to that of reconstructing L above
(i.e. (43)-(45)).

Next we give the results for the stationary case: i.e. u(x, y)= u(x). The methods to obtain these
i-formulae follow from those of 41. by reduction or alternatively can be verified directly using the same

techniques as those described above and hence will be omitted. apart from illuminating comments. The
stationarv" eigenfunction #,(x. kR. k 1) satisfies

A(x, kR, kI) = 1 -'- G (u~), (50)

where the Green's function is given by

O(k 1. ) __-__._______ .,d

G,ix. kR, ki) = - i 2. - . e

Hereafter we assume that (50) has no homogeneous solutions. By direct calculations it can be verified that
G, satisfies

. 5,G,(x. k R, k1) = 8(x), (52a)

..Y, 2 .ikR. (52b)

and A, satisfies

WA = u4 (53a)

or. if .L(x. kR , k1 ) MRe
'  . 4 satisfies

(-I - k-- u/x)) 0. (53b)

G is obtained from GL by

G,(x. kR.k)f GL(x, ., kR, kj)dy, (54,

where the identity

9(x-') 9 (-x-y) (v) 0(-v)
x - i0 x - i0 x - i0 x -,- i0

is useful. Indeed the Green's function G,(x. kp,. k,) turns out to be the same as that of Faddeev [101!
The analogue to (23) is now

a4, - 1 e 1( kI- ,T,{kRk;, kR k 6
kR. 17C. Rj ,- R -k)6 -kR u)± x. L. k d.

(55al

.,.

'- : . ; 
t

m ,: I S p - - 4' . . ' . . . -'" " ' "... ".'-' ', 7'/ - ,...
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where

T,(kR.ki. )= iteX( k"u(x) x,(x kR. kI) dx. (55b)

It should be remarked that the reduction of TL to T obeys

TL(kR. 1 r=S (k(k I - kR)) T,(kR, k.). (55c)

The reconstruction equation for A,(x. kR. kI) follows directly (noting that as k, ±c - is a function
of kR ):

p(xy. k. kI) 1-2f-- k, k, -kiO -j (x.v. k, k )dk dkl. (56)

using (55).
Taking the restriction wo, =k,.( -kR)=O into account then the compatibility 8Midk:&kx .

a2A,/ak 8k1 (i j) yields

-T = T), on w= O. (57a)

where

= ( k R. k R, k<(57b)

The change of variables (w0 - 0)

W n

k R = W, IXkR =7 -w-x -- V. w 1x

k,= -w , K wX.,- 1-. " , .wX, . j= 2 .  n.

_jves a transformation (kR. k, ) - (X. w) from 3n - 2 variables to 3n - 2 variables (note we have the
restrictions i:=k and wK0=kr. -kR)=0 incorporated into this transformation). Thus (57)-(58)
implies (taking = I in (57))

8T,'..,... .,
c6XI,.
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and then by integration

6(x 1 - x (xi, X1,
X Lf -- R X X P,- j X .R + io N1,I[T.,(x w)dx dxl (w). (60)

where &(w) is the Fourier Transform of u(x) with respect to w. (60) plays the role of characterizing

suitable data T(x. w) as well as reconstructing the potential in analogy with (35). Namely. the LHS of (60)
must be independent of X and j and have appropriate decay in w. Again we note that lim,, -_ ,(T, -(
is as a function of XpR, the boundar, value of an analytic function in the lower (+ oc)/upper (-oc)
half-plane and vanishing at X R x . This allows (60) to be obtained directly by using the same ideas
discussed earlier.

Next we show how the inverse data described earlier i.e. T(kpR. k i . ). TL(kt,4 kj , E). T(kR. k1 . ) for the
general case and limit/reduction cases can be related to scattering data. In the limit (L)/reduction (S) case

scattering theory has a clear physical meaning. In the general case we shall define formal scattering and
show how time dependent/independent physical scattering can be recovered as special cases. Naturally one
can derive these latter results ((L),(S)) directly. Since such an analysis is essentially identical to the general
case and will be omitted. Also remark that such formulae for the time independent case was originallv

derived by Faddeev [10).
We begin by defining a "left-Volterra" operator in terms of a Green's function.

,x. . k) -e(j.)f ex - k-y/ d , (61)

where k = kR ik, and we will require a p, < 0 for convergence. Then for functions u(x. V) of compact-

support in both x and i' (a much wider function class is allowed in the limit/reduction cases):

,,(x, .Y.. k) I -- ,(uA )(x.Yy k). (62)

The scattering function is defined by the limit v - of (62) (as Y --. ,

,( .v k)-lI -f dEel' ' f - " .k 'f) ,  . ,9 1,R " k ). (63a)

S( kF. kj. a) jfe' X1
-  k.' )v/(uA,±.)(x, y. k ) dxdv. (63b)

or. by changing variables - - k R,

S(k,. k,. e-) ffe ., )( x. k) dx dv. (63c)

where

(x. Y. k R. x kiR)- : - ik I ' ( c - kR) (63d)
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The eigenfunctions g and LL, are related as follows:

P ,) 6 (u -UA ,( uA,). (A - Am) - (- (j,)( uU). (64) "

Using (20) and (61) we have

G - G, )(x.k.k - e .,-s(4)) d4. (65a)

hence

Vul- , ) , f e'  ,.e -,(,c ))t( kR. kl. , dj. (65b)-1

where

TR. k 1 , 4)= - 8 j .e A ik,')(up±)(x, v. kp,,k,)dxdv. (65c)

Note when s(j)= (j- kRol/oR- (kl- kII/OR): -= 0. Then A(x. y. kR. k1.)= (x.v, kR. k.4 and
t(kR, k ..) T(kR. k 1.)(see 22).

Then employing the symmetry condition on G,

e -h¢  " ;G(x, y. kR, kl) = G,(x. y, 4, kl) (66)

(which is verified directly), we have from (64)-(66)

- , )(x. ,. kR. k,) = fed" ... .. (-s(4'))t(kR. k,4')M'.(-. y. 4'. k,) d4'. (67)

Multiply (67) by (C,/a)u(x. v)e-  ..... I" and take ffdxdy. Then we find with the definitions of T.
(63.65)

T(kR, ki. J-(kR. kl. )-f,(-s(j'))t(kR. kl.')('. ki,. )d'= 0. (68)

(68) yields T(kR, k., J) given the "scattering data" S(kR. ki, 4).
The limit/reduction cases now follow immediately. For o iC R < 0

L(-u y, kR.4) = i(x.,4- kR: -4- k) :). (69a)

- S( kR, 4) = -iC ff e . ug )(x. y. k ) dx d v. (69b)

Note in (69a) BL(x.ykR.4) Lx.Rk,)=i(x-2yki.-kR on the "shell- sl()=( 4 -
6:k1):- (k R - k1 ) 0 0. In (69b) g:- is defined by

LA..(x. Y. kR) - y. kR) (69 )

.. . . . . . .. ..... -.... ........ .,. ...
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where

GL(X, v. kR) = -iC, (y) ex''x-i::kf)vdj. (69d)I is not a function of k, hence neither is S = S(kR. ). Similarly:

t- TL(kR.k. )iCj ekBL..i,.(uI)(x, y. ka. k)dxdy. (69e)

Thus we have the scattering relationship

"t(kR. k ,. §-S (kR, ) fe k (s ' 7t(kr . ,. t 'I)9L(V' )di' 0-. (70)..'

Again given the scattering function SL(kR, ) in principle we can obtain T,'(kR. k1, .) from (70) and this
equals TL(kR. k 1,.) (see (41)) on SL( )= 0. For the time independent (reduction) problem we make the

observation

G(.k(x.kR)f G(x.v. kR)dy . k2kr, i0 d- G (x. kR). (71a)

Namely G.(x. k is identical to the standard outgoing Greens function (which is also analytic in the upper

half s = IkRI plane. Thus

t( .kR ) ;,-(x, kRt) (7 1b)""

Usin e- d='(: - k ),we have the identifications when u(x. Y) utx)

§L( kR.~ -C_ 18(Qk:A(kp.U (71 )
tL kR. k 1. i iC._ (, k )Tk R . k , 1 . (71d)'

where

A( kR. ) f e- '&0)( uAj( x, kR) dx (71e)

and 7 (kR. kI. ) is defined by (55b). Then (70) reduces to

T,( kR. k,. j) - A)kR. ~)-iC,-; f8(k, *(kP ') - k' )7 7,(kR. k1 . .c')A( c'. )d. ' = 0,
("2) I

on -i. (72) was obtained b, Faddee% [10 in his study of the time-dependent Schr6dinger problem

and serves to relate the physical outgoing scattering amplitude to the "inverse data" T,( kR. k, .)(also
called the nonphysical scattenng amplitudei. We reiterate the fact that the denvation above could be
carried out directl% on the time-dependent, independent Schrodinger operator without an% recourse to

generalized scattering" as we have introduced it here.

- ..
...................................................................................
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3. Concluding remarks

(i) T(kR, k1. 4) (and TL(kr , k1. 4). T,(kR. k1. 4)) satisfv a quadratically nonlinear differential-integralequation when n > 1; i.e. (31) (and (46). (57)). The fundamental feature of this equation is that it leads to

characterization/admissibility criteria for the inverse data. However at the same time it precludes the
existence of a simple time evolution of the data i.e. T(., t) * T(..0)el"'1 . Such simple flows are associated .
with the KdV, KP etc. equations. Hence this result provides still another explanation for why local
nonlinear evolution equations have not been associated with the multidimensional scattering problem (14).

(ii) Eqs. (35) and its limit/reduction cases (49). (60) provide characterization/admissibilitv criteria for
the inverse data and a reconstruction formulae for the potential in the same formula. Even for the classical
problem of the time-independent Schrddinger operator (cf. [10. 11) our eqs. (60) yield some novel
information: it shows that Faddeev's characterization (with which it is essentially equivalent cf. [8c])
naturally arises as an integral equation for T, a somewhat more convenient condition to verify than his
analyticity requirement: it also shows that once T is known the potential can be found purely by
quadratures. The scattering data are related to the inverse data via the formulae (68. (70), (72). For (70),
(72) the scattering amplitudes are physically relevant and. in principle, measurable. It is an open and
important problem regarding how one could measure the scattering amplitude and at the same time ensure
that the inverse data resulting from (70). (72) will still be admssible even when small errors are present.
Namely. how can one adjust errors in data in order to ensure admissibility.

(iii) Although here we have discussed the analysis for the generalized Schrodinger scattering problem. the
algorithm also works other operators in a straightforward way. In [8b] the scattering problem (see (v) in the
introduction):

,- ~(iv)'-,

: - JV,- q(x. Y)c.

with -apr ial, xER", veR, q an N×N marx. and J,-= diag(J,'.. J,'). Again results analogous
to (31) follow; i.e. the scattering data satisfies a nonlinear equation. On the other hand. iv) is one of the
few operators that has a compatible time evolution operator and hence a Lax pair describing a nonlinear
evolution equation in multidimensions: the so-called N-wave interaction equation. But the N-wave
equations can hold only if certain restrictions are put on J/: namely that the vectors J' = J'. .14. J,)
are all colinear. In this case the coefficient of the nonlinear term in the equation for T vanishes- i.e. the
analogy to (31) is now purely linear and it allows a simple flow in time and the N-wave equation follows
and is solvable bv IST. Nevertheless, despite the fact that the N-wave equation is formaly multidimen-
sional. new variables may be introduced to reduce the problem to two spatial dimensions. The cohneanr't
of the vectors J allows a reduction to three spatial dimensions [SbJ and the introduction of appropriate
characteristic coordinates further reduces the N-wave eouaton down to two spatial dimensions 141 Apart
from this special case the analysis suggests there will not be other local nonlinear evolution eauations
compatible with (iv) (see also [15]).

(v) Prototype operators such as those discussed in this paper pro'ide a convenien testtng ground ior the
development of scattenng (and also IST) theories wruch one hopes can aiso be arp .ec Ic, tOther ptlvscai),
interesting models.

-7.7 ..
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NOTE ON THE INVERSE PROBLEM FOR A CLASS OF FIRST

ORDER MULTIDIMENSIONAL SYSTEMS

A.I. Nachman*, A.S. Fokas
I 
and M.J. Ablowitz

ABSTRACT. The inverse problem for a multidimensional system of
first order differential eQuations is considered The * method-
ology is employed and integral eauations are developed for which

the Potential may be reconstructed.

In recent years there has been substantial interest in the study of: (a)

inverse scattering problems for appropriately decaying Potentials (i.e. given

suitable scattering data reconstruct the potential q(x)); (b) the initial

value problem of certain pnysically important nonlinear evolution eouations

(i.e. given q(x,O) find q(x,t)). In this note we shall consider the irverse

o'oblem associated wit.hi

n

0 .1l

where q(x,x) is an N x N matrix-valued off-diagonal function in K
n 
) and

J are constant real diagonal N x N matrices (we denote the diagonal entries

of i by .. , . J,). We note tna: the methods presented here can be easily

extended to the system J * q,, lic whicn as rIX

becomes the linear eigenvalue Problem associated with the so called N wave-

interaction eouation in n'l spatial dimensions fsee 11)). Associated with

(7 is a nonlinear evolution ecuation (a comolexified form of the N-wave edua-

tion) which is in a sense illoosed. Nevertheless (1) provides a natural scat-

tering system to study with the methods at our disposal.

Using the transformation w(xo~x,k)=u(xo,x.k)exo(ik,(x,-iX.. ); k F nh

we may alternatively consider the system

n

~Quations (1). (2) are natural extensions of well Known problems:
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i) In one spatial dimension, i.e. n-0, (1) would correspond to

O* ikJ * q(xo), -- < < <. (3)

-ikjx
The transformation ,(x,k) -u(xo,k)e 0, k c C leads to the system of

differential equations

+ ik[J,L] - qw. (4)

The function W(xok) has Oesirale analytic Properties in k, provided that

q is in an appropriate space. Utilization of these analytic properties leads

to the formulation of a Rienann-Hilbert (RH) problem for the solution of the

inverse problem associated with (4). The 2 x 2 case has been studied in [23,

[3]; it can be used to solve the initial value problem of the nonlinear

Scnrbrdinger, Sine-Cordon, and modified Korteweg-deVries equation. The 3 x 3

case was studied in [4]; it can be used to solve the initial value problem of

the 3
1 wave interaction a review of the above work appears in [5]). Recently

the N x N case was studied by a number of authors and in a completely rigorous

manner by Beals and Coifman [6,7].

ii) In two spatial dimensions (i.e. n-l) equations (I) and (2) were studied

in [8'. The inverse problem was formulated and formally solved in terms of a

DBAR ()) Problem (a ' problem generalizes the notion of a RH problem). The

2 x 2 case of this inverse problem was used to solve the initial value problem,

of certain nonlinear evolution equations in twn spatial and one temporal dimen-

sion: the Modified Kadomtsev-Petviashvili II (MKPII), and Davey-Stewartson I

(OSII) equation. The hyperoolic analogs of (1), (2) (i.e. J - iJ in two

spatial dimensions (i.e. nW2) was studied in [g. The inverse problem in

this case was adequately treateo via a RH problem; it was used to solve the

initial value problem of the N wave interaction, MKPI and DSI.

The solution of tne inverse problem associatec with (2) has two aspects:

(a) develop a formalism sucn that given appropriate inverse data T iJ(k,A) one

may reconstruct the potential q(xo,x). (b) It turns out that Tij(k,) de-

pends on 3n-l parameters while the potential depends only on n+l. Thus one

needs a characterization equation that restricts the scattering data. In this

note we only consider (a) above by extending the method of [6,10], question )

is considered in [1l.

In component form equation (4) is written as:

: - k iiI (5)

Tne specific eiaenfunctions we shall work with are defined by the integral
equa ti ons:

S G(q .) (6a)

7--
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or ,

L ii +1 (xC"Yox'y ,kd (6b)

where . is the usual Kronecker delta function. The Green's function sat-ij i

isfies: (LG) i 6(xo-yoj6(x-y) and is given by:
K e

whereby one finds:.2 Gen

G b ( xskgn() ei d C ((x8)Jwnee"ne eGiJiDeunon') fne y ~x 1 "'x>O ", x cl x t

0 n7 0

+j p

ij< o, (j, .k ( ji.,j(

a7) is then calculated by using:

- i .d& - 27 i sgn(x)e
° 

) e(-xb)

i I e~(c~id)Cd . 1 e(n L d/,

JcP,<A  c +O -

where the heaviside function is defined by: e(x) " , x>O; x, x<01. We next"'7;-"sno tht B/ p(whre l)[p ak +i lak )) cnbe expressed in terms

Sefnin the att wer3 ; datRa:

of w. From (6a) we have -
i

and by dlirect calculation
j i .jj x

aGi- • i( )(Xo + )G'  (Ica)

.* .

S(ji . JI) n is (Xox~k.)
r ( n  j n  z J X )e"X(l b

where

ai (xo~x,k,x) ij(xo,x,k )  n

Defining the scattering data:..
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T ijk + -is8j (y,.y.k A) (qw1 i (YOyk)ddy (11)

(9) may be written in the form:

I Xjk) ie S (x,x,kX

G13 (x) ( Jy )e (y0 yjk~y~d (12

pp

In order to express ;u; in terms of ,j we decompose ;u/ak into fundamental

matrices M ,. x ,,k. X) on ZJvXz . 0:

where the elementary matrix E has components:

Hence once we have Mvv then we have w/ak pvia:

n~ Vx-xk 
1

)P A i5VV'(x .kJ S(Xk) Z Jn6( L )e O -~kX)Tvv'(k~x)E,,dX
3i( 2 ,,)n JR 1 £

*G(q -)(x 05 x.k) (14a)

and hence

-(1 ( p 6(, J-X )T V1 ('-M ,(x0,x,k,X~)dX. (14b)

From (14) it is clear that the only nontrivial combinations come from columns
of ( u/l k such that j=v . Letting Cnjre-6j we have

rj . 16 (YO 5 x k, ,k. Qr,))

xGr3(x.y.Y.K)e eY.~.~(rr(yyk)dyody (15)

The fact that the Greens function admits th~e following syimmetry condition:

e G (,,x * 'x'''jkX) on : i''x 0, (16a)

where

7- 7



j - W- .- 
7"7" 

-
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; (k.')-(-T k.R'X ,lk . . with satisfying J X-0 ' 16b)

(16b) immediately gives:
(rj)rj (xOx'k) u r ( O'x . ; vik,)

whereupon from (14) we have

z.X, 6( J %- -X "J )T" (k.X)e

j .V' (2 ,) n z

U(xOx ' (kAl)E,, d;. 1)

It should be noted that (16a) is suggested by the transformation between

bounded eigenfunctions of (3). To see this explicitly, note that if w is a

solution of (3) then so is jEv,, and therefore the function v(xox,k) '

_E. exp(itk (x-ix oJ,)) satisfies (4). But since the function

u(x0'X~h)exD(iEhL(x -ixoJ 1 also satisfies (A) we have the transformation law:
"z I ht(x C ixOjX) -iei kzl(zxioJj )

"(Xoxk )  V(x,,h)e,e (18)

For boundediess we require:

n
L.n ( k LJ' )ixo]) a O. (19) :

hence : '.-
h V (kX) k (- R + Xz, k ) 1 (20a)

iv
for any on

n
X J . (20b)

L.l L

Finally the reconstruction is effected by inverting w one variable at a time:

Wo.+k dk dk' (2

p .kp .R (21)

and using (17) to obtain a linear integral equation for . Asymptotically, as

k -, (21) yields

.................................................................,k )dk Rdk'

On the other hand substituting tne asymptotic expansion

* u-(l ) *

into 14) gives the relation:

P

Ui
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-~ ~~~ (x X).- f-'' ?P-- (.' Ix~-w,~~ ~ ~ w~ . I7 I . * Wk -.. ... k * )dk dk".p] (23)." . -

p.
p.

S,
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from which we have the formula: "

with (17) used in (23).

IF" Forim.iae (17), (21). (23) can be used for the reconstruction of q(xO.X).

At this point one needs to Show that: (a) q(xo,x) given by (23) is independ-

ent of k .....kDll, kp~ l ,....k (b) the same q(xo,x) is found regardless of

which inversion formula is used (p-I .... n); (c) there exists a restriction on

the scattering data T ij(k,A), which has 3n-I parameters whereas q(xo,x) has

only n+l. It can be easily shown that (i), (ii) are equivalent. Furthervire

there exists a characterization equation restricting the scattering data T

this equation is given in cl].
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Nonlinear evolution equations associated with a Riemann-Hilbert scattering
problem

A. Degasperis,' P. M. Santiniya and M. J. Ablowitz
Department of Mathematics and Computer Science. Clarkson University. Potsdam. New York 13676

(Received 7 January 1985; accepted for publication 29 March 1985)

In an earlier paper nonlinear evolution equations associated with a Riemann-Hilbert scattering -
problem, which reduces, in an appropriate limit, to the Zakharov-Shabat-AKNS scattering
problem, were considered. Here we discuss certain necessary constraints associated with the
scattering problem and their impact upon the associated evolution equations. Moreover, the
direct linearization of the nonlinear evolution equations and an algorithm to construct an
N-soliton solution are given.

I. INTRODUCTION 0-(xz)-lim (x + iyz), xER. (2b)

The inverse spectral (or scattering) transform (IST) It turns out that q'(xz) can be written as
method is a well-established technique to solve and investi- (t turn oc

gate certain nonlinear partial differential equations of evolu- P (xz) = exp ( - I (-. f coth -(x' -x
tion type, a number of which are physically relevant.' 2 . t 77

Attention has been recently given to the intermediate
long wave (ILW) equation2- because it brings into the field const1 , < mx <77.
some novelty: that is, it is an integrodifferential, rather than where

- purely differential, nonlinear equation, that is, integrable via exp r/7" (z) = 1 + zcr3 and h. (xz, defined by
- a spectral problem based on a differential Riemann-Hilbert h (xz) (I + exp[i (zbx] U (x)?k" (xz) (41

(RIH ) boundary value problem rather than an ordinary dif- is -con iu os Fo x pRia dzstisiesthe (4i
ferential equation. Moreover, the ILW equation depends on
a parameter which we call 7, in such a way as to coincide, as if h (x,zdxI < cc. Moreover, formula (3) implies the fol-

7 vanishes, with the Korteweg-de Vries (KdV) equation, lowing periodicity condition:

and, as 77 goes to infinity, with the Benjamin-Ono equa- tb-(xz) = (Elfb)(xz), (a)
tin'" where E -- exp(ir7 8 ) is the formal shift operatorIn analogy with the well-known connection between the wif

Korteweg-de Vries equation and the modified Korteweg- (Ef)(x) =f(x + hi). (5b)

de Vnes equation. a modified ILW equation (whose 7--- It was shown in Ref. 18 that the linear problem (1) and
* limit is the modified KdV equation i has also been introduced the associated class of evolution equations reduce, in the lim-

and investigated. 'z-3 it 77--0, to the generalized Zakharov-Shabat-AKNS scat-

* Further progress in this direction has been made by tering problem' 9 and to the associated class of nonlinear evo-
" extending" the class of intermediate-type long-wave equa- lution equations. 9' 2 ° Moreover, for the class of nonlinear

tions, and by introducing '"6 an intermediate version of the equations associated with (1), an infinite family of conserva-
Kadomtsev-Petviashvili equation'' iwhose 77- limit is of tion laws was derived and only elementary properties of the
course the Kadomtsev-Petviashvili equation , spectral problem were essential for that derivation. In fact.

More recently,"' a class of matrix nonlinear integral the emphasis in Ref. 18 was mainly on the novel nonlinear
evolution equations was generated through the following evolution equations, such as an intermediate version of the
2 x 2 matrix spectral problem: nonlinear Schr6dinger equation, and on their associated Lax

pair.
b- x.z) = G px~z)b-[x,z(, xe, (la) In this paper we present new results concerning the RH

G xz- =I -- za3 -- U [x), (I b) boundary value problem (1) and the class of evolution equa-

where I is the identity matrix, o, = ( _, ), z plays the role tions associated with it.

of spectral parameter, and U (x) is a icomplex) z-independent 1I. THE BASIS CONSTRAINTS
-, potential function.

Given the matrix function U(xi. (I 1 defines a homogen- In the theory of matrix RH problems:' of the type (1) an
. eous RH boundary value problem on a strip of the complex x important role is played by the determinant of G (x.z). In our

plane. The matrices i.b x.xz are the boundary values of a case
function P tx,:) holomorphic in the horizontal strip between det G (x,z) = I - z: - z tr(a, U (x)) + tr U (x) - det U (xl.
Im x = 0 and Im x = 7: 16)

I/,- XX rlim P Ix --ly.), xER, (2a) All the results of this paper are derived when the potential
,.0, matrix U (x) is subjected to the following two scalar con-

€"" straints:'.
*'Permanent address: Dipartimento di Fisica. Universita di Roma 1. 00185

u 11lia. tr(a U(x)) = 0. (7a.
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tr U(xi -. det U(x) = 0, (7b where L "'3, defined in Ref. 18, is written here in the follow-
or equivalently ing more convenient form:

Ux= I1 - Q ix) - 1 -I Q x), (8) L ILF. G17)

where Q (xj is the off-diagonal part of U (xl. In this case the in terms of the diagonal and off-diagonal matrices F, (xi and

determinant of G ix.:j takes the particularly simple form G, xj, respectively. which are constructed through the fol-

det lowing recursion relations:
, det G (x.l= 1 - "2 9)GQ I[GQ

independent of x with the following important conse- I ua)

quences.
(i The matrix G (x.:i is invertible for every xeR; this is a -" CA I F, IQ I -i/2) - F,,Q

necessary condition for the solvability of (1). -(i/2)10,, G,(l UI + -C (G.,U ]1, (18b
liii The total index K of the matrix RH problem (1) is F, =0, G, = 2Q, (i8c)

zero, since
where [,] and , are the usual commutator and anticom-

S= )2,-rl- [arg(det G (x~zj)] ",-, (10) mutator between matrices and UL is the diagonal part of U.

where [ ix] :_ = 1 (c) - 0( - 0C). The class of evolution equations is obtained by replacing
Then an important theorem due to Gohberg and 6U'"/b, by U,.

Krein:: shows that "generically" the two partial indices K,, Using Eqs. 115), (17), and 18), one can show that
K: W, = K - KI are both zero. This fact guarantees the exis- 6U- "- 1(2,. 1 - Q-')-'Q,6Q'"'! -bQ'"'
tence and unioueness of a bounded fundamental matrix

V" ix.:i associated with (1). Q :(tr F, I

Ill. THE REDUCED CLASS OF EVOLUTION EQUATIONS

The existence and uniqueness of bounded solutions of X (F l [ Q,G, . (191

I can be used in the construction of the IST method for the 2I+lQ I

class ofevoiution equations introduced in Ref. 18. if and only Moreover. if 1& holds, one can prove by induction that
if the constraints 7t are compatible with the evolution equa- the recursion equations (181 decouple in the following way:

tions themselves. It will be shown in the following that this is F, = 2, 1 - - [Q,G, ], (2a,

indeed the case. Hence the constraints 7), introduced as re-

quirements for the solvability oft 1]. are in fact a reduction of G, G,. G, = 2Q. ;20b)

the class of equations introduced in Ref. 18 to the following Then, from 19) and 20a. one immediately gets

class of matrix nonlinear evolution equations: ( 2 1 - Q- - 1 Q.6Q 1 Q 2 I)
Q, = c,,,JO11)

where From 15;, (17). and :20 one finally obtains the evolution
equations I 11) and from ) 16), 17). and !201 one gets the corre-

] 1 -) sponding time evolution of function t,

F is off-diagonal. vIy is an arbitrar- polynomial iny, and L,- :.L " +- (22)

'.:dy sinh {Z-4Y - x)f} L , ( 3a) where -
77 77 L a, - ((IF ; _ ' [ Q , -I Q )

- fixl - dy coth -y - x) Cy). 13bi
7 -7 - I -

- IQ (23)

In order to show that 81 is a reduction for the class of and the polynomial ,1y). introduced in 1I i, is taken to be

evolution equations associated with 1, one has to show that

the set of the matrices Usatisfying (8) is closed with respect The first three equations of the class! I I are isee Ref. 18)

to the elementary deformations 6U.' such that the following:
,= 'Namely. one has to prove that if UixI satis- i an intermediate wave equation

tfes '8ithen
6U' =,l-Q" - Q.6Q'" -- 5Q'". ,l4. y.. = ... wc.. L= c un- 1) 'pE'"R."

In Ref 18 it was shown that the elementary deforrna- ;2 4a -

tions 6'". such that itl, = B ei> are given bv [.=c- p U =\I-p'

6 b , ((E - h. "crlh I -'c,)( - L ', ' I iii an intermediate nonlinear Schr6dinger equation

with ( 1 011-11,?v icv:, U =u-

B Tx.:i = b, . L '-.cr. b, arbitrary constants. " , / -i' p R4b

161 tt'. -1 C7 -p u"'.2! 1 -pb *g'24b
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P~hF-'R(0*qihj-0,V. N-SOLITON SOLUTION

i% The.N-soliton solution for the class H11) can be obtained

(iii' an intermediate modified KdV equation b etn ~xz ad te j x:z=exp[ - i 'izlx -Ia. /2Lz-a ,

* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ [ , C.1-pt (%-l2\ - 2f(x) is the usual step function), and
N

U I-v (24c) Xc. 6(Z - z.,, IMZ1 >0, Imz>0,

*Taking the i7-O limit of Eqs. (24)-424c1 one obtains dA (z) 1 N

%the linear wave equation, the nonlinear Schrodinger equa- F- X b(z - 1j), 1M Yj < 0, lm z< 0.
tion. andi the modified KdV equation, respectively.

The limit 77-cc can be immediately performed, 8i re- (32b)
* plcin 2 nd 'b H nd Hresectvel, were In this case Eq. 28( reduces to a 2Nth-order algebraic sys-

(H~x_ dv-x -~ if(25) tern; in particular, ifAN = I we have the following one-soliton
dy~y x) 25) olution:

is the Hilbert transform. We conclude this section by notic- U, (Xlt) = U,22(X,! = (Z, - z,)sinh ['ki - kfld lx,!),
ing that Eq. (24a, can be written in the following simple and (33a)
suggestive form: 1 xr)' [oh iek

* 2-' 9, = csin e, 69(x,t), (26) coh kie ]/lz,(3b

*where vix.t) = i sin 0 ix.;). In the limit 77- o Eqs. (26) be-
r_ come U21(Xlt) =c,e - ( cosh(77k,)e=lk

*HO. =-c sin 0, (27) -cosh(77k)e'- Id lx,l) (33c)

* which we refer to as the sine-Hilbert equation, in analogy where
with the sine-Gordon equation 0., sin 9. z1aafk,) =tanI77kj, z,Emzlk1 ) =tan(1k,(, (34al

* I. TE DREC LIEARZATONdx, (X" _cosh [7(k, - k,)] + cosh[,(k,) - 46-k,)],IV. HE DRECTLINERIZAION(34b)
Postponing to a separate paper the presentation of the

I ST method for the solution of the Cauchy problem associat- d k~ix-a,(f r ~ 3c
ed with Eq. (I!), we nowN present the direct linearization -C'F'1(Z, ,(=eiv , 7 k-k (34d)
DL; 2 for the class ( 11).

The DL is an algzebraic approach based on the existence ank 1  mk,-kindR Rek-k)stsfthm-
of a linear integral equation which provides a large class of qult
solutions of the evolution equations I11;I k 5 k (/277)k, < 0. (35)

* Proposition:- Let u be the solutions of the integral
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Abstract

The generalized wave equation and generalized Sine-Gordon equations are

known to be natural multidimensional differential geometric generalizations

of the classical two dimensional versions. In this paper we associate a system

of linear differential equations with these equations and show how the direct

and inverse problems can be solved for appropriately decaying data on suitable

lines. An "initial-boundary value" problem is solved for these equations.

- . . -
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In 1967 Gardner, Greene, Kruskal and Miura [1] discovered that the Cauchy

problem, with suitably decaying initial data on the line, associated with the

Korteweg-deVries (KdV) equation could be solved by making use of ideas from the

theory of scattering/inverse scattering. Subsequently a number of nonlinear

equations of physical interest have been solved by variants of this method,

often referred to as the Inverse Scattering Transform (1.S.T.). Accounts of

these techniques, associated algebraic structure and amenable nonlinear equations

can be found in texts on tL s subject (see for example [2]).

An equation which fits into this framework is the Sine-Gordon equation:

utt -Uxx - <sinu=O. (.1)

The Sine-Gordon equation is of interest to physicists and mathematicians.

It was first solved by I.S.T. in [3], In physics it arises in the study of

Josephson junctions, particle physics, stability of fluid motions etc. In

mathematics it has arisen classically in the study of differential geometry.

In this paper we will describe a method which enables us to carry out the I.S.T.

for certain nonlinear n dimensional generalizations of the Sine-Gordon and wave

equations(< = 0) which arise in the study of differential goemetry.

Originally the Sine-Gordon equation was derived in the study of surfaces of

3
constant negative curvature contained in Euclidean space R . There is an

intimate connection between such surfaces and solutions of the equation. Indeed

' in 1875 Backlund [4] considered the following. Let M and M be surfaces in 3

and i:M--4 be a diffeomorphism such that for any point p in M and corresponding

point p z(p) one has the following.

. . . .."* , * ..
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(a) The line determined by p, and p is tangent to M and M at p and p

respectively;

(b) the distance d(p,p) = r>O is a constant independent of p;

(c) the angle between the normal vectors N(p) and (p) to the surfaces is

a constant e independent of p.

Backlund proved that under these conditions the surfaces M and M have

2 .2
constant Gaussian curvature < = K - sin e/r2 which can be normalized to be

-l. Moreover he showed that given any surface M C 3 with curvature < = -l

there exists a two parameter family of surfaces M with curvature = -l

related to M by diffeomorphisms which satisfy (a)-(c).

The analytic interpretation of these results originated in what is now

called a Bcklund transformation, which provides new solutions to the Sine-

Gordon equation from a given one. Later Bianchi [5] obtained a permutability

theorem for surfaces which provides superposition formulae for the Sine-Gordon

equation.

Motivated in part by the work of [6] the natural geometric generalizations

of these results were obtained in [7,8] by considering hyperbolic (constant

sectional curvature equal to -1),n-dimensional submanifolds Mn of the Euclidean

space 2n-. The geometric results for hyperbolic manifolds Mn contained in

R2n-l were extended [9] to manifolds Mn of constant sectional curvature k<l

(resp. <<-I) contained in the unit spheres S2n- I (resp. hyperbolic space H2n'l).

In particular, the zero-curvature sibmanifolds of the unit sphere correspond

to solutions of a generalized wave equation (GWE) which is a homogeneous version

of the generalized Sine-Gordon equation (GSGE) associated with embeddings in

Euclidean space.
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The higher dimensional version of 3cklund's results takes the following form:

dX + XAtX A -X B (1 .2)

.qhere
_n 3?X- dx

dX = 7 dx

A. i= i(z) aij dx.
1 1 1 al

B dx. 1 - dx. I4 i, j < n (1.3)Bij ai x i  j alj 3

nxnand a : (a. P . (1.2-1.3) reduce to the 3acklund transformation for the

generalized Sine-Gordon equation (GSGE) when

i(z) : (z 2+(2il-I))/2 z  (1.4)
*1-

and for the generalized wave equation (GWE) when

i(z (l-z z x(z', (1.5)

The compatibility condition required for the existence of solutions to these

Backlund transformations results in a system of second order partial differential

equations for an orthogonal nxn matrix a : ,aij in (1.2) which is a function of

n independent variables a a(x The equation has the form.

1 aaiX x ;x, a ;X
rX 1  1 , ali a j

k~i,j alk2  ?xk k  i

;1 al i, 1 ali 3alk3x1k a lij X - ak lj xi xj.Ij, k distinct

a . a . ajk '-k i~ ,(1.6)
?X i a x

1 1

- ,.~~~. - ~ ~ - ~~- - t -~ t.. . . . . . . . . . . . . . . .
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where e=l for the GSGE and =O for the GWE.

We observe that when n=2 and e=l (GSGE), the orthogonal matrix a = fa..):

cos sinu
" a 2 I 7

for the function u=u(x,t) reduces the GSGE to the classical Sine-Gordon equation

(1.1). We note also that if the parameter z in (1.2) is given by z=tan e/2 then a is

the constant in BMcklund's statement (c) above. On the other hand when n=2 and

E =O, then with (1.7) the GWE reduces to the wave equation (I.1) with K=0. When

n>.3 the generalization of the wave equation discussed here is nonlinear. A

Bdcklund transformation and a superposition formula for the GWE was obtained in [9].

The Bcklund transformations (1 .2) described above, are in fact matrix

Riccati equations. Linearizations of such a system can be performed in a

straightforward manner (see for example [10]). Introducing the transformation,

X = uv 1  (1.8)

where U,V are nxn matrix functions of ,. . xn the following linear system

is deduced,

(d A

with the components of A, B given in (1.3). Compatibility ensures that the

orthogonal matrix a = [aij} satisfies the GSGE with (1.4) and GWE with (1.5).

Alternatively if we call( u  = , the following linear system of 2n ode's

are obtained:

= : x. , + C , (1.10)
3x

" where Aj, . are (2nx2n) matrices with the block structure

? 33

. " ' " '. "-' . ,.. ,'. ' .. '. ' . ., ' '- . -** '".. . .. . . ..
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0j j 0t , 0:• (1 1 1
jj j) 0!

Here aj, Y. are (nxn) matrices having the following structure
331

a. : (- -l)el aj+a
S(1.12)-:

a ae.

where ej {e j ik is the unit matrix

i : k j :"

jik : otherwise (1.13)

and in component form yj takes the form:

j alk zxk , zj a1  x kkj

* (1 .14').

In (1.12) a is the orthogonal matrix: 2n SOW(n) associated with the GWE when S=X

and with GSGE when 6= 1( Z : z-1 and yj is the matrix (1.14): Rn-4Mn()

-+- = 0.Although y, is determined by a, it will be convenient to treat

-(ay, ''(n ) as the data. Then both (1.6) and (1.14) arise as the compatibility

conditions for the scattering problem (1.10).

[ ' . . . . ." . .- ' .r , _' . .- . .. . ." .- - - - ... *....- ,- , , . - . *- .



*Since we shall separately examine the two cases GSW and GSGE, we write down the

explicit scattering problems which are compatible with each of these equations.

*For the GWE the scattering problem takes the form; * = x)

with

A1  (0 a) j (1.16)

*and e. is given in (1.14) and C. given by (1 .11 , 1 .14) .

For the GSGE the scattering problem for Tp = p(x,z) is

0 ea

ax a ie 0

0
+X(Z) (1.1 7a)

* a~), xz), given above, or equivalently

3q Aj + B.~ .(l .17b)

where /O ua.\
B. j u =diag(*l, - -I

a u 0
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In this paper we show how the direct and inverse scattering problems

associated with the GWE: (1.15) and the GSGE: (1.17) can be solved for matrix

potentials tending to the identity sufficiently fast in certain "generic"

directions (to be discussed later). It is along such directions (lines) that

suitable initial values for the entries of a(x) and the matrices y.(x) can

be specified. In §2-4 the analysis for the GWE is given and in §5-8 the

* analogous problems are discussed for the GSGE.

Finally, we remark that solving the n dimensional GWE and GSGE reduces

to the study of the scattering/inverse scattering associated with a coupled

system of n one dimensional ode's. This is in marked contrast to other attempts

to isolate solvable (local) multidimensional nonlinear evolution equations which

are the compatibility condition of two Lax type operators

Up = Xp (1.18)L*'
t = M (1.19)"

where L is a partial differential operator with the variable t entering

only parametrically. Although nonlinear evolution equations in three independent

variables can be associated with suitable Lax pairs (e.g. the Kadomtsev-Petviashvili,

Davey-Stewartson and three-wave interaction equations - see for example the review

[ll]),.little progress has been made in more than three independent variables.

In this context one has to overcome a serious constraint inherent in the scattering

theory for higher dimensional partial differential operators in order to be

able to find associated solvable nonlinear equations: i.e. the scattering data

generally satisfies a nonlinear equation [see 12-14]. The analysis discussed

herein completely avoids such problems since the linear system is simply a

compatible set of n linear one dimensional scattering problems. On the other

hand, these results demonstrate that the initial value problem is posed

with given data along lines and not on (n-l) dimensional manifolds.

Ii

. .. -.. - > . . -. .. ... .:. ... . .. ... . . ..... .. .. . .. - .. . . ... .. . .
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j2 The Forward Problem for the GWE.

We consider here the spectral problem (1.15), assuming the associated

compatibility conditions, i.e. the GWE. The strategy is to transform (1.15) to

a standard form and to associate to it a Riemann-Hilbert factorization problem

as in [15]. The transformation uses the 2nx2n orthogonal matrices

0F

I,( I J u Ul u2. (2.1) ..

If p is a fundamental matrix solution of (1.15) then the function

(x,x) : U(x) 1 lp(x,) (2.2)

satisfies

=xj; + QYp (2.3)axj

where

J= UA U = " U (2.4)

ke.~ :X 01 i~-.
and Q. C U-U1 2--U U2 U (2.5)

j ax.where j= -at (2.6)

Conversely, (2.2)-(2.6) imply that is a solution of (1.15). We look for a

solution , in the form

nxe j xjJj. (2.7)

Then (2.3) is equivalent to

m- cJj,m] + Qjm. (2.8)

. , , .. . . , .

.. .. . .. . .. .. .. ., .. . . .. .. . .
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These equations imply that det m is constant. We look for m such that

m(.,x) is bounded; det m(x,x) = 1. (2.9)

Proposition (2.1). Suppose that for some , (, mI and m2 are two solutions of

(2.8), (2.9). Then there is a matrix W(x)eSL(2n,a) such that

m2 (x,x) - ml (x,A)e XxX JW(x)e Xx
'J  (2.10)

Moreover, if X E i R then W is diagonal.

Proof. One checks that

- • ~m1 (x,x) -l m2 (x,x)eXX 0 (2.11)
3X

so the matrix in brackets, W(x), is independent of x. Now (2.9) implies

exp(xx.J)W(x)exp(-,x.J) is bounded with respect to x, which is only possible

if x i R or W(x,) is diagonal.

n
We study the problem (2.8), (2.9) by restricting to lines in •.. Let w

be a unit vector in R and y a vector orthogonal to w. Along the line

L(w,y) ={y + sw s 1} (2.12)

we consider the restriction of m:

-i(sx) m(s,x;w;y) M(Y+swx).

Then (2.8) gives

3F ~mi; +3s

Jw- w.-J 3 j,

Q(s) Q(s,w,y) ZwjQj(y+sw). (2.14)

Definition (2.1).

The data {=j,yj. is small in the direction w if the operator norm of the
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associated matrix function Q satisfies

j Q(s,w,y) ds < k < 1 (2.15)

for some constant k and all y orthogonal to w.

Definition (2.2).

The data a j,yj} is a.sqmz.totcaL/ ,Lz t in the direction w if each

derivative of each entry of the matrices C, yj is rapidly decreasing at infinity

on each line L(w,y), uniformly with respect to y. Thus, for each such matrix

entry f, each integer N > 0, and each multi-index B,

11-) f(y+sw)j < C(l+lsD)"N  (2.16)

. for every y i w and s .

Definition (2.3).

The direction w is ,boique if the 2n numbers -tw; are distinct.

Theorem (2.2).

Suppose the data (aj,yj} is small and asymptotically flat in some oblique

direction -. Then for each x e C- . i R there is a unique m(.,X) which solves

the problem (2.8) and (2.9) and satisfies the asymptotic condition

zim m(y+sw,x) 1 t, all y i w. (2.17)

Moreover m is bounded, m(s,-) is holomorphic on C"i R, and the limits

m.(xx) = zim x'x±E) (2.18)

exist and are smooth functions on R x i R. Also

zim m(x,x) I, (2.19)
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uniformly with respect to x.

Before discussing the proof of this theorem, let us consider the impli-

cations. For X € i R the limits m, give two solutions of (2.8), (2.9). There-

fore Proposition (2.1) implies the following.

Corollary (2.3).

There is a matrix-valued function V i R -SL(2n,C) such that

M+(x,x) = m_(x,x)e XXJv(x)e" x 'J (2.20)

Rn

for all x R X i IR

Definition (2.4).

The function V is the accttmtg data associated to (a,yj) and the

direction w.

We now sketch the proof of Theorem (2.2). Note that

j - (ata) -0, (2.21)

Qj + Q= 0, (2.22)

In particular, the diagonal entries of Qj are zero. The problem (2.14)

with the conditions

m(.,x) is bounded and tim r (s,A) = I (2.23)

is exactly of the kind considered in [15]. Indeed Q 0 and Jw is

diagonal with distinct entries (since w is oblique). It follows from the

results of [15] and the assumption (2.15) that (2.14), (2,23) has a unique

solution fi which is bounded and holomorphic for X C . i IR and has a continuous

limit on ]n x i JR. Moreover, i is smooth with respect to s hence our assumptions

,--- .Y - ; - ' -,- - . . ' ' ' '. . ' . ''- -'. , - ,. - '- , " -.. -." .. - .. . .' - . .. -. . .-. ].
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imply also that it is smooth with respect to y. These considerations give

us many of the properties of m, which is defined by

m(y+sw,x) = m(s,x;w,y) yiw (2.24)

To show that m satisfies the full set of equations (2.8), we use the compatibility

conditions (GWE). It is most convenient to choose new variables x :(Xl"".n),

na aby an orthogonal change of coordinates in IR chosen such that aX as

The desired equations (2.8) take the form
am-.

x[J',m] + Q'm Rr (2.25)
ax 3.

for j >1, and

am - X[wm] + Qm Rm.

The compatibility conditions (GWE) imply

;Q- aQC
; Q =T- 2 + Q-Q, j >l; (2.26)

[Jd, Q] [J Q']j >1. (2.27)
.2 w'

The solution to (2.14) satisfies the integral equations (see [15])

m(s,x) = I + 3' ((s-t)X)EQ(t)m~(t,X)]dt -

where the limit t- depends on the matrix entry and on the sign of ReA, while

, operates on matrices by

()B] euJwNe-ujw (2.29)

* We utilize: (2.27) (employing shorthand notation) to. compute-

.. . . -p.* . .. . . . . .. ... '
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- -=1=~- 2 t

.s .

=s + aQQ mQ- XL.) ,Qm I -xQ[JC,m] dt

S~m
:Qjm + 2(Qm- -,[J m] -Qm2dt. (2.30)

Thus

-mfQ(m Rjm)]dt, (2.31)- m Rim 'R[ Q(Tt

which implies (2.25). (Note that the asymptotic conditions were used in

* the calculation (2.30), to eliminate a boundary term in the intergration.) This

". completes the proof of Theorem (2.2).

We turn now to the properties of the scattering data V. We introduce an

* automorphism of 2nx2n matrices:

B ( B( ) (2.32)

Theorem (2.3).

The scattering data V has the following properties:

each entry of V-I belongs to the Schwartz space S(i R); (Z.33)

v(-X) - t T 7X (V(x) ) (2.34)



' . -'. , ,,' *-,,., .. ,, .t ... .~ ,' . J. .' I P ,,.-. ,.w- 
!
w .... ~ *1 . .d-'

,  r -. ..- , w- . ,

~-14-

Proof. "

(2.33) follows from results in C15]. To obtain the symmetries (2.34),

observe first that J and Q. are real and

ij : -Jj, Q. -Q. = Qj. (2.35)

It follows m(xx) satisfies the same equation as m(s,x)-and that both

m(x,x)a and (m(x,t) satisfy the same equation as m(x,-X)., The boundedness

and asymptotic conditions are also satisfied, so

m(x,) = mx--, X), (2.36)

m(x,-x) = (m(x,X) " ) t m(x,x)a. (2.37)

Therefore

V(-X) = m(O,-x) -m+(O,-)

S (t -(O,X)l t : V()t ,  (2.38)

and similarly for the remaining symmetries.

Let us remark here that the construction of m by a. Neumann series

implies the estimates

q Ilm l[ (1-k) "1  I1m  Ill1 k(1-k) "1 -.

Ilm- 11 4 (1-k) " , flm l-Ill 4 k(1-k) 1 , (2.39)

, where k < 1 is the constant of (2.15). It follows that

LIv - 1I1 1 2k(1-k) 2.

In particular,

IV - I. 1 if 0 .< k 4 2 -K.

% _ .o _ ... . -.
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We conclude this section with a brief discussion of normalizations and

the relationship of this treatment of the forward problem to that in [15]. The

normalization (2.17) depends on the choice of a direction w; therefore the

solution m and the associated scattering data V depend on w. In [15], with n=l,

the normalization was made at -- and the resulting scattering data V had certain

principal minors identically equal to 1. Here, the same considerations show

that for a given direction w certain principal minors of the associated scattering

data V are .1. In the absence of a single natural oblique direction, we have

chosen to consider all possible scattering data and have not imposed conditions

on principal minors. We return to this question at the end of Section 3.

... ~...... *~.**.**~ %* . .
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* j3 The Inverse Problem for the GWE.

Suppose V i R SL(2n,l) is a matrix-valued function which satisfies

*the conditions (2.33) and (2.34). Suppose also that

IV~x 2 I CE (3.1)

* Theorem (3.1).

For each x R there is a unique matrix-valued function m(x,) which

is bounded and holomorphic on I-,. i 2, with continuous limits m. on i D2,

* and which satisfies

m~ (x,x) = m (x,x)e NX~JV(X)e- X '

zim M(x';x) = .(3.2)

The function m is smooth on R nx(aINi R) and satisfies a system of equations

aml Q(X)m (3.3)

where Q.+ Q.t I and Q. is real,

Q() U1(x) x)U (3.4)

Moreover, the data (a.,y.} is asymptotically flat in every oblique direction

*i P

This theorem essentially follows from results in [15]. One way to obtain

* the equations (3.3) is to note that the function n. , [J.,m] also
j 3

satisfies the Riemann-Hilbert condition (3.2), from which it follows that
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: n m is continuous across i R. Therefore Q is entire; it is bounded,

hence independent of X, which gives (3.3). The symmetry conditions (2.34)

-1 t
imply that m(x,7), (m(x,-x)' ) and m(x,-x)' also solve the Riemann-Hilbert

problem (3.2). By uniqueness, m has the symmetries (2.36) and (2237). Therefore

Q. is real and has the symmetries (2.35), which in turn give (3.4). Finally,

an oblique direction w corresponds to a diagonal matrixd w  Jw. having

distinct entries, and the results of [15] give rapid decrease of the data Q.

along lines in the direction w, 5s iesired.

Remark. The data Q. generally does not decrease rapidly in directions which

are not oblique.

To connect this result to the GWE, we need one more step.

Lemma (3.2).

n
There is a function a R SO(n) such that

aj _ t Ma_
-at 3x (3.5)

Proof.

The compatibility relations for the system (3.3) imply

-- + k : -- =k'j" (3.6)
3xk 'K k xj

These in turn are the compatibility relations for (3.5). If a solves

• (3.5) then - (a ta) = 0 , so we can guarantee that a E 70(n) by choosing it to

" belong to SO(n) at a specified point or asymptotically in some oblique direction.

A solution of (3.5) is unique up to left multiplication by a fixed element

.' of SO(n). if a is any such solution we refer to Ka,yj} as inverse data for the

function 1.
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Theorem (3.3).

If {a,yj} are inverse data for V, they satisfy the GWE.

Proof.

We simply reverse the procedure at the beginning of the preceding section.

The function

a " XXJ
i(xX,) = ,) U2 m(x,x)e (3.7)

satisfies the system (1.14), so (a,j) satisfy the GWE.

Let us connect the inverse data explicitly to the asymptotics of m in X.

By [15], m has an asymptotic expansion

m (x)X x--, (3.8)

This expansion can be differentiated term by term, giving

xj n : Qjm + Jj,mV+l]. (3.9)

In particular, m0  I and so we obtain

Qj(x) : -[J ,ml (x)]

= -zim x[J.,m(x,x)]. (3.10)

This gives another method for deriving the symmtries (2.35) of Q from

symmetries (2.36) and (2.37) of m.

' "I
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As we noted at the end of section 2, different functions V may occur

as scattering data for the same inverse data unless some further normalization
p..

is imposed. Therefore to complete the analysis of the relationship between

solutions of the GWE and scattering data, we need to know when two functions

Vl v2 as above give rise to the same inverse data. Let mi, m2 be the associated

solutions of (3.2). If the inverse data is the same, then by Proposition (2.1),

m2 (xX) ml (x,x).(X), x E : i (3.11)

where a is diagonal and holomorphic and has boundary values ,.; moreover

a(x) -, I as xl-,. .a has the same synmmetry properties as m, so A is the

solution of a Riemann-Hilbert problem (2.3) for a diagonal V. Clearly V 1

and V2 are related by

V= ( VlI +  (3.12)

In particular, V gives trivial inverse data if and only if V is diagonal.

Conversely, if V2 and V1 are related by (3.12), where _ are the boundary

values of the solution to (2.3) for a diagonal V, then V1 and V2 have the

same inverse data.

-~~~~~~~~~..-......... .........-........ -.. :...".. -"........................ilif :Ili
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4 A Well-oosed Initial-Value Problem for the GWE.

The result of the preceding two sections both suggest and solve an "initial

boundary" value problem for the GWE. Let us say that a solution fa,yj} of the GWE is

small if there is some oblique direction such that the associated data {fj,yj}

is both small and asymptotically flat in that direction. As before, if w is

a direction (unit vector) in IRn and y is orthogonal to w, we parameterize the

line L(w,y) by s-y + sw. Without loss of generality we may translate the

coordinates and take y = 0.

Theorem (4.1).

n
Suppose w is an oblique direction in]Rn

. Suppose

a L(w,O) - SO(n) and Y : L(w,O) - M () are smooth mappings such thatn
a s- and Y are Schwartz functions of s, y + . 0 and

I I 3(s)II ds <3 -

Then there is a unique small solution fa,yj} of the GWE such that

j(s) a(sw) (4.1)

y(s) -w y.(SW)

Proof.

Let r be the solution of

(S X) : wm]+ Qm, Zim ni(s, ) : (4.2)

where 7 J and Q UU 2. There is a mapping : i - SL(n,T)

such that for xe i R,

. . ... ....- .
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xSdw -xsJ w  .,

f.(s, x) = m (s,x )e V (1 )e (4 .3)

Note the term eSdwV(\)e"'sjw is the specialization to the line L(w,O)

of e V(x)e -XX' d  Thus factorization of this latter function gives us an

,. extension to n of m. V satisfies the hypotheses of Theorem (3.1) so there is

-o• an associated solution m of the Riemann-Hilbert probelm (.3.2) and

(~x :m(sw" ). (4.4)i

Let fa,yj} be inverse data for V, normalized so that a(sw,y=O) = a(s)

Because of (4.4) we obtain

a(s) -w S~ (SW)

Y(s) S rw y (sw). (4.5),.

dat da t.. The first identity implies a - on L(w,O) so we obtain a a on L(w,O).

*This completes the proof of existence. Uniqueness follows from the fact that

the scattering data associated to a small solution {a,yj} and to the direction w

is uniquely determined by m on L(w,O) and therefore is uniquely determined by

the functions 3 and j defined by (4.5). Therefore the scattering data is uniquely

determined by the functions (4.1). The scattering data, in turn, determines j

and determines a up to left multiplication by a constant matrix. Since a(s,w,O) =a(s

is prescribed, the proof is complete.

Remark: One can think of V(X) as the initial values for the function

Vl(X,y) : eV 'V(x,O)e-y' J. (4.6)

Replacing V(.k) in (4.3) by Vl(x,y) gives the evolution of m to all values of

31 which in turn corresponds to m. This is in analogy to the standard

situation in IST problems.

'I

: .... " J" -" '-" --" °"-- "" "- '", ". -" "" " " -......" " " ""-"" " " ""--"."-..,-....-"-."..."..,.."."".-"."-....-..
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55 The Forward Problem for the GSGE.

Here we assume the GSGE and consider the associated spectral problem

(1.17). This problem cannot easily be transformed to a single standard form,

unlike the GWE. Nevertheless we shall still associate a factorization problem

of Riemann-Hilbert type with (1.17).

Once again we denote = " = (i -O) (5.1)

. and we let # denote the automorphism

E# U U EU~ U2  (5.2)

where

u = diag(+l ,-l ,-,...-l )M (5.3)
n

In particular,

J # J1. J# -Jj 1 < j, n. (5.4)
j$

We set

(x,z) u 1 (x,z) (5.5)2 ""~z

so that the spectral problem (131 becomes

. .zAj: + + Cjp, (5.6)
9xz.3
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wi th A VAU =U

1 -
A. 2- 1A 2 B 21 jU22 C~ i U2 C U (5.7)

The trivial (unperturbed) solution a --: 1 0 of the GSGE has the associated

* equation

ax 2 .3 Z.3

which has a solution exp(x.j(z)). We view (5.6) as a perturbation of (5.8)

and look for a solution in the form

(x,z) =m(x,z)eXJZ (5.9)

The equations for m are then

-x z[Ajm -mJj+ EBm-mJj] + Cjm. (5.10)

As before, we normalize by

m(.,z) is bounded. (.1

Definition (5.1).

The direction w inIRn i s i* f Iw1I>iw iI for 1 < n .

Anticipating the argument below, let us consider
n

J3 (z) 2.zw.J (Z) w I S(z)J1 I + w ()J (5.12)

*This matrix is diagonal with entries -w S(z) , ±W S(Z) , tw x(z), j< j4n . The set

* of z in It such that two distinct diagonal entries have the same real part

always contains the set

=i'U.( fz; z (5.13)



-24-

i.e. the union of the imaginary axis and the unit circle. It is equal to this set

precisely when the direction w is oblique and principal.

Definition (5.2).

t aThe data (a,aj,yj} where again aj -a - is =ZZ in te dtecton

w if for every y I w,

Q s w,y) Il ds + JIa(y+sw) 1 (5.14)

Here again Q =w.Q. zw. (L 0 We say the data {a,aj,y.} is

a._mpxto.ic.au jZat i-Ln the d cton w if (aj,yj} is asymptotically flat

in the direction w.

Theorem (5.1).

Suppose the data {a,aj,y.} is small and asymptotically flat in some

principal oblique direction w. Then for each zzl,, there is a unique

m(.-,z) which satisfies the system (5.10), (5.11) and such that for each

y w

A.im m(y+sw,z) = I. (5.15)

Moreover, m is bounded, m(x,-) is holomorphic on 1\,Z, and m(x,.) has

continuous limits on z from each of the five components of T',..

To be specific, let us denote by m+ the limit on z from the components

( zl>l,Rez>O} and (Izl<l, Rez<O} and denote by m the limits from the other

two components.

U-7



!---

-25-

Corollary (5.2).

There is a matrix-valued function V: K"i}- SL(2n,T) such that

m+(x,z) = m(x,z)eX'J(Z)V(z)e'X'J(z) (5.16)

As before, we define V to be the scattering data associated to (a,yj) and

the direction w. To prove Theorem (5.1), we make two transformations. First, let

m'(x,z) = U2"  a 0 U2m(x,z)'

= U U2m(x,z). (5.17)

Then the system (5.10) becomes

am-- £.(z),m'I + Qm, (5.18)

where

z) U -1 1  \ + I [U 1 8.U-J ] (5.19).2 (xz 2 } U2 +z .. ,
J)J

Along a line L(w,y), (5.18) leads to

T. [Jw(z),m] +
as

m(.,z) bounded, zim fi(s,z) I, (5.20)

where

Q'(s,z) Q,(s,z;w,y) = . (y+sw,z) (5.21)

Although this problem is not identical to that considered in [15], nevertheless I
the methods of [15] apply to give existence of a unique solution m(.,z)

• i 'w V) fnr all. z r \z su ch -that , .
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f I Q (s z) ls < I.(5.22)

The integral in (5.22) is majorized by that in (5.14) when !z >1..

Changing 
to

m,(y+sw,z) -- i(s,z;w,y) (5.23)

and arguing as in s2, we see that m = U2 Um has the desired properties

for all lzl>I. To obtain results for IzI( 1 we can either use a second

transformation or take advantage of a symmetry. Note that

j.I/z) j (z)#,3 3

B Ai A Bj C (5.24)

Therefore m(x- satisfies the conditions for zI,<l. This completes

our sketch of the proof of Theorem (6.1).

As for the GWE, one has symmetry properties in addition to (5.24),

namely that J., J A., B., C are real and

J(z) Jj(z)t ,

A. A A

- t = _o (5.25)

-B -8 I

- ---c..---- .-..

j i-

-t-C C!
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Thus one has
it

m(x,-z) = m(x,z)- 1 =M(X'Z)j

(5.26)

m(x,i) =j~) m(x, 1 Z) =m(x,z)"r.

The symmetries of V are an immediate consequence.

Theorem (5.3).

The scattering data V has the symmetry properties

V(-z) V(z) t CVz=

V 9 (Z), VTi) (V(z)1 - (5.27)

*The analytical properties of V can also be deduced from the results of £15].

*As given above, V is defined on each of the five components of z.{C±i}1.

We join the two unbounded components by compactifying at and set

- 1 z' 1, Re z > ,

z Z+= 0, IzI > "
(5.28)

* { zI 1, Re z <0

z Z+Z 0, JZ1 < 1).

* For convenience, we denote restrictions by

KV J = 1,3,

(5.29)

VI V 2,4

Theorem (5.4).

Each V. has a smooth extension to the closure of Z. Each derivative

of V-1 is 0(z )as z 0 and 0(z ) as z ~ ,for each integer n >. 0.
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At :i the V. satisfy consistency conditions:

VlV 2VaV4(:i) = I. (5.30)

SMore generally, for each integer N > 0 there are matrix-valued polynomials

pj of degree N such that

-l N+1
Vj(z-i) =(pj(z-i))l  pj+(z-i) + 0 (Iz-iI ,

as z - i, (5.31)

with similar conditions at -i, where we take P5  PI.

As motivation for the next section we note that the function m' in

(5.18) extends to C-, and is the solution of the Riemann-Hilbert factorization

problem (5.16) which is characterized by

zim m'(x,z) = I. (5.32)

. .

. . . . .. . . . . . .. .-.
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36 The inverse Problem for the GSGE.

Let V SL(2n,T) be a matrix-valued function satisfying the

symmetry conditions in Theorem (5.3) and the smoothness, decay, and consistency

conditions of Theorem (5.4). Suppose also that

flV( ) - Ifl., k , x (6.1)

where k' is a sufficiently small positive constant. Then by the methods

of [15], for x I R there is a unique function m'(x,.), holomorphic on C\ z

with limits on z, such that

m+(x,z) = m'(x,z)eX'J(z)v(z)e -X 'J(z)

zim m'(x,z) (6.2)
lzl

nThe function m' is smooth up to the boundary on Rnx(V'Z), and

m'(x,z) :I + O(z- ), zH-, (6.3)

m (x,z) 0 m(x)zv, z-(. (6.4)
V=

Moreover, in any principal oblique direction w, for y i w and X I \z

zim (m(y+sw,.) : (6.5)

where a.is diagonal. The convergence in (6.5) is O(js -N) for every N,

and the same is true for derivatives of m. Also, m' and its inverse

are bounded functions.

In view of these properties the functions

- (Z),m-]) (m-) (6.6)
3 x..

"., ./.% ..i .: . ; . :;-, ( .: .% -b , i-?:)' ,:, )( ..~" ;.i. -( ,;:J ..':-i-:';- ,,). > .i :i ) iii 3i,



are holomorphic on tN-, continuous across except at z 0, bounded as ,

-1
and 0(1/z) as z-0. For any fixed x such a function is affine in z

Therefore m- satisfies a system of equations which we can write in the form

[j(z),n-] - (B -J')m + Cjm (6.7)
3x. 2

where B. : B (x) and Cj : C (x).

The asymptotic expansion (6.4) can be differentiated, and (6.7) implies in

particular that

B'm' M J, (6.8)

Now m' is asymptotically, and rapidly, diagonal in principal oblique
0

directions, so in such directions

B, - J-.0 . (6.9)

Because of the symmetries of V and the uniqueness of m- we obtain the

symmetries

-1 t
n'x- [mi(x,z) ] = 'Z'7

(6.10)

mi(x,i) = m-(x,z).

These in turn imply that B. and C. are real, while

-t B

B= (Bj) -(B

C ( t -(( (6.11)

, - /- o . . .-. " . . . "- . -. , " .. .- .. - . . . . . . -. -- ". . . . *. * . , .



Thus these matrices have the form

= ) 2  (6.12)

where a. a. y. are real and

t tct. + C1 0 j +Y (613

We can extract more information from (6.8) by exploiting the symmetries

(6.10). These symmetries imply

m0  m m0 (m-l-t m, (6.14)

* so

m6 U 12U 2  (.5

*where f and g take values in 0(n). Let

m"(x,z) m'x,(.6

Then (moY m" satisfies (5.2), so

m'(x,z) =(m n" (x,z), (6.17)

Thus

ma 0 (ro', (6.18)
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so that

t= 9 g9 (6.19)..

. Since also g2 =gtg 1, g has eigenvalues ±l. Now g depends continuously

on V and g I when V I. Thus g is symmetric with all eigenvalues +1, hence

g I, (6.20)

Combining (6.8), (6.12), (6.15), and (6.20), we obtain

Bj fue (6.21)

Now (6.21) implies that for jfk,

3j~ -1 (0 0) U2,

BkJj = ( U2 . (6.22)k2 2-1

The compatibility relations for (6.7) include

+ C.Ck +(J.B'8.J
X k + 4jk k

x + C C + i(dkj B+Bkj ) (6.23)

In view of (6.22) and (6.12), (6.23) implies

+ jak + (6.24)
;xk x"

These are precisely the conditions for solving for a with

J : . t  ;_a
-at (6.25)

~,x.

3°

• ; - . ..- •.. . . ... .7 ...-
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* We can require that a -1 as s - - along a family of principal oblique

*lines. Then since a. is skew symmetric (and real),

'In
a P, S0(n). (6.26)

Definition (6.1).

Ca,yj'l is inverse data for the function V.

Theorem (6.1)

The inverse data f a,y.} satisfy GSGE.

Proof.

Let

U(x) = a(x) 0 u2 -(.7

~i x z) = U~~ ~ x z eX1 ) (6.2 )

-1 1

A. =z UU = (x~z e 1  (6.3)

Then ~ ~ ~ ~ ~ea th qaino(.)bcm

e b 0 (6.31)



- 1 U -1
C. UC.U Ix i J

(6.32)

0p

and

b =a f u. (6.33)

*To complete the proof we only need to prove

b =ua.. (6.34)

Let us write

Er =E (u(6.35)

Then we want to prove

A. BT (6.36)

To prove (6.36) we write the compatibility conditions for (6.29) in the

notation of matrix-valued differential forms. Let

A ZA dx., B =zB dx., C =zC dx. (6.37)

The compatibility conditions are

A -A =0 B B,

dA =A -C + C -A, dB A B +B -A,

dC = C -C + A ̂ B + 3 -A. (6.38)

Since C CT :Cdx. we have

d(A-BT) =(A-BT)-C +C-(A-BT). (6.39)
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Now

A - = U(J (B ) #)U l

j- iI,1' i

U(JB B#U -  (6.40)

and we know that J B vanishes asymptotically in certain directions.

It follows from this fact and (6.39) that A - B 0.

Remarks.

I. As for the GWE, the data {fj,y.} can be recovered from the

asymptotics of m' as z - as in (3.10). Thus the orthogonal matrix-

valued function a is also determined implicitly by these asymptotics.

2. The data {a,aj. y} is small in every principal oblique direction

if the constant k' of (6.1) is small enough, and is asymptotically flat

in every principal oblique direction.

3. As for the GWE, two functions V and V2 give rise to the same

inverse data if and only if

V2 = ( A)'Vl +  (6.41)

where a is the solution of the Riemann-Hilbert factorization problem (6.2)

for a diagonal matrix-valued function on z. In particular, V gives the trivial

solution of the GSGE if and only if V is diagonal.

- - -*
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§7 A Well-posed Initial-Value Problem for the GSGE.

With the same conventions as in §4, one has the same conclusion:

Theorem 7.1.

Suppose w is a principal oblique direction inn

Suppose d = L(x,O) -, SO(n) and Y = L(w,O) -- M (IR) are smooth mappings
n

such that a = -tda and y are Schwartz functions : + 0, and

I 3 , (s)lj ds < k

where k0 is a sufficiently small positive constant. Then there is a unique

small solution a,yj} of the GSGE such that

3(s) = a(sw)

y(s) : wjyj(sw). (7.1)

The proof is the same as the proof of the analogous result for the

GWE in §4, hence is omitted.
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INVERSE SCATTERING, INVERSE PROBLEMS AND INTEGRABILITY

OF NONLINEAR EQUATIONS IN MULTIDIMENSIONS

by

A. S. Fokas and M. J. Ablowitz*
Department of Mathematics and Computer Science
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Potsdam, New York 13676

I. INTRODUCTION

The Inverse Scattering Transform (IST) was discovered by Gardner,

Green, Kruskal, and Miura [1] who were able to relate the celebrated

Korteweg-deVries (KdV) equation in the variable q(xot), to the classical

time-independent Schrdinger equation IFXXo + (q(x p;t)'+ k2) 0 0. The

next eigenvalue problem to receive considerable attention in this field

was the so-called AKNS [2], [3] scattering problem: T' = iKJ. + qy, where
x'

J is a 2 x 2 constant real diagonal matrix and q(ko;t) is a 2 x 2 off-

diagonal matrix containing the potentials. The AKNS problem is related

to the nonlinear Schr6dinger, modified KdV and sine-Gordon equations. The

3 x 3 extension of the AKNS problem (3 x 3 AKNS) was studied in [4] and

is related to the 3-wave interaction equation in 1-spatial dimension. The

N x N AKNS [5] has been studied by Shabat £6] and then by a number of

authors [7] and is related to N-wave interactions.

*Supported in part by the Office of Naval Research under Grant Number
N00014-76-C-0867, the National Science Foundation under Grant Number
MCS-8202117, and the Air Force Office of Scientific Research under Grant
Number 78-3674-0.
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The IST method can be summarized as follows: The solution of the

initial value problem of certain nonlinear evolution equations is essen-

tially equivalent to solving the inverse scattering (i.e. reconstructing

the potential q(x0 ) from appropriate scattering data) of related eigen-

value problems. The Schrddinger eigenvalue problem (with its Sturm-

Liouville extension [8], [9]) and the N x N AKNS are, in our opinion,

the main differential problems which have been used in connection with the

IST in 1-spatial dimension. There exist several variants of the above

problems [10], [11], which however should be solvable by some simple

variation of the procedure used to solve the above two fundamental ones.

It is therefore natural to consider extensions of these two eigenvalue

problems when seeking multidimensional generalizations of the IST.

The ]-spatial dimensional extensions of the above eigenvalue prob-

lems have been recently studied by Bar Yaacov and the authors: The
(k2

Schrfldinger eigenvalue problem can be generalized toCoA + X + (+k ) : 0
1 0 0

and the potential q(x0,xl;t) is related [12] to the Kadomtsev-

Petviashvili (K-P) equations [13]. There exist two important cases

a = i and o= -1, corresponding to KPI and KPII; their inverse problems

were linearized via a Riemann-Hilbert (RH) [14] and a T problem [15]

respectively (a problem is a natural generalization of a RH problem).

The N x N AKNS problem can be generalized to 'Y Jlayl + qY [15], where
1

l is an N x N constant real diagonal matrix and q(xo,x l ;t) is an N x N

off-diagonal matrix. There exist two important cases, hyperbolic (a = -1)

and elliptic (a = i); their inverse problems were also linearized via a

RH [16] and a T problem [17], [18]. The hyperbolic problem can be used

to solve the initial value problem of the following nonlinear equation in

2-spatial and 1-temporal dimensions: the N-wave interactions, modified



* KPI, and Davey-Stewartson (DS) I equation [19]. The elliptic problem can

be used to solve the modified KPII and DSII. Prior to our work, inter-

esting results regarding the solution of initial value problems in multi-

dimensions can be found in [20], [21], [22].

In dealing with the above 2-spatial dimensional problems it

became clear that one had to generalize the notion of the inverse scatter-

ing in general and of inverse scattering data in particular. This is

also true for scalar operators as well. Namely, in both the elliptic and

hyperbolic cases one can solve the inverse problem in terms of certain

data T(kl,k2) kI , k E R which we call inverse data. These data can be

related to scattering data only in the hyperbolic case (see sect'On 2.B).

However, the elliptic case is still physically important since, although

one apparently can not define physically meaningful scattering, one may

still use the above formalism to solve physically interesting nonlinear

evolution equations (modified KPII and DSII).

In this paper we shall consider extensions of the N x N AKNS

problem to greater than 2-spatial dimensions, i.e. we shall study

n
Tj +a Z J T =q1Y, aa~x0  Z dx 0 O R +  iI"

0  Z=l Z

where q(xo,x) is an N x N matrix-valued off-diagonal function in Rn+l and

J are constant real diagonal N x N matrices (we denote the diagonal

entries of J by ji) Alternatively, using the transformation

.Y(xox.k) = i(x0,x,k)exp[i(kx-axokJ)], k E Rn,

n
hwere kx - aXoJ = k (x - J we shall consider

0 1
n

x0 +x (+y~ + ikZ[jzd,]) = q1.
0. .=1
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For the sake of completness only, we state the following, regard-

ing the extensions of the Schrddinger equation in greater than 2-spatial

dimensions: i) Such extensions are not known to be related to any

. nonlinear equations. ii) The inverse scattering of the classical 3-

spatial dimensional Schrddinger equation has been studied in [23] and [24]

and more recently in [25] and [26].

The system (1.3) is interesting for the following reasons:

(a) In the hyperbolic case, i.e. a = -1 one may resolve the physically

important question of inverse scattering: Given the scattering ampli-

tude function S(X,k), X, k e Rn, find the potential q(kox).

(b) A special subcase of the hyperbolic case, namely if the J. s are

constraint via
- d j diJj

P z =i J , . p , r = 1 , . . . ,n , i j ,.z= l ,. . .

r r r r

contains the N-wave interaction in n+l-spatial and 1-temporal dimensions

[5]. This equation is the only known nonlinear system related to an eigen-

value problem in greater than 2-spatial dimensions (for our purpose the

self-dual Yang-Mills equations is not an evolution equation).

(c) For the general a case (except c = -1) one cannot define physically

meaningful scattering and there appears not to exist any related physi-

cally interesting nonlinear systems. However, it is mathematically

interesting since it provides a unified approach to multidimensional IST.

With respect to the above note: (a) In the hyperbolic case the
• Rn

scattering amplitude function S(X,k), X, k e R depends on 2n parameters,

while the potential q(xO x) depends on n+l parameters. This fact, for

n > 1, three important implications: i) Using the Bohr's approximation

I I A -A I
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it is possible, in an elementary way, to reconstruct q(xo,x) in closed

form in terms of S(X,k). ii) From the above reconstruction it follows

that the time evolution of q(xo,x;t) is linear, hence it is impossible

for q(x0 ,x;t) to satisfy a nonlinear evolution equation. Thus the N-wave 'S

interaction equation must be reducible to 2-spatial dimensions. iii) a

The scattering data must be appropriately constrained. This "character-

ization" of scattering data, which is a novelty of problems in greater

than 2-spatial dimensions, expresses the essence of difficulty associated

with inverse problems in greater than 2-spatial dimensions. (b) In

the general a case the situation is similar to the hyperbolic case: The

inverse data depends on 3n-1 parameters (while q(xo,x) depends only on

n+l parameters), it is elementary to reconstruct q(xo,x) in terms of

inverse data, q(xox;t) cannot satisfy a nonlinear evolution equation,

the only interesting problem is the solution of the characterization

problem.

In this paper the following results are presented:

(a) The hyperbolic multidimensional N x N AKNS problem (i.e. eq. (

with a = -1) is first considered in section II: i) the N-wave interaction

equation, which is contained in ( . ) when the J s satisfy ( ), is

reduced to 2-spatial dimensions via an explicit transformation of coordin-

ates. ii) The characterization problem is solved in two ways: The first

method requires that the reconstructed q(xox) must be independent of k.

The other, explores the analytic structure of the inverse data

T+(A,k), A, k c Rn with respect to k. In more details: In ItA we intro-

duce eigenfunctions u (xox,k), -(xox,k) analytic with respect to kI ,

for k, > 0 and k, < 0 respectively. With the aid of these eigenfunctions
•"I- I- -"

.. - . -- . . - . . . . . . 5 * *-- .
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we can solve the inverse problem as well as reconstruct q(x0 ,x) in terms

of a Riemann-Hilbert (RH) problem uniquely defined in terms of the in-

verse data T+(X,k). The relevant formulae are direct generalizations

of the analogous formulae in 2-spatial dimensions [16]. These formulae

provide a less effective way of reconstructing q(xox) than the Bohr's

approximation, however they proive the basis for the solution of the

characterization problem. In lIB we relate the inverse data T+(X,k) to

the scattering amplitude function S(X,k) via a linear integral equation.

Also we give the 3ohr's approximation reconstruction of the potential

q(xo,x). In IIC we solve the characterization problem for T+(X,k) using

the results of IIA. Because of IIB this also provides a solution of the

characterization problem for S(X,k). In I1D we show that if the J' s are

constrained via equations ( ) a new k can be introduced (which is a

combination of the previous k's), the scattering data depends only on

two parameters, and the characterization problem is by-passed. This also

provides an additional motivation to reduce the N-wave interactions to

2-spatial dimensions. In lIE we apply the direct linearizing method to

the solution of the inverse problem.

(b) The general a case is then considered in section III. The associ-

ated characterization problem was first solved in [28] via the "T equation".

In this paper both the T equation and its derivation are somewhat simpli-

fied by using slightly different inverse data than those of F27], [28].

In more details: In IlIA we introduce an eigenfunction u.<x,,x,k) bounded

nfor all k e C Using a 3 problem we solve both the inverse problem as

well as reconstruct q(xox) in terms of the inverse data
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T iJ(kl...... rn), ki £ C, mi E R, i,j l .... N. Similar form-

ulae were given in [27] for c = i, in [28] for general a, and provide

generalizations of the analogous formulae in 2-spatial dimensions [16].

Here we use a slightly different "symmetry condition" of the underlying

Green's function. The above formulae, like in the hyperbolic case, pro-

vide a less effective way of reconstructing q(x0 ,x) than the Bohr's

approximation but again provide the basis for the solution of the

characterization problem. In IlIA we also give the Bohr's approximation.

* In IIIB we derive the T equation. Also, the reconstructed q(x0 ,x)

appears to depend on k; furthermore there exist various inversion

formulae for the solution of the inverse problem. It is explicitly

shown here that the equality of the inversion formulae is equivalent to

q(xox) being independent of k. In IIIC it is shown that if the J 's are

constrained via equations ( , a new Q can be introduced. Tij depends

* only on n+l parameters, and the characterization problem is by-passed.

This is consistent with the fact that the T equation is identically zero

in this case.

Concluding this introduction we note that all results presented here

are formal: Both the direct and inverse problems involve linear integral

equations. One still needs to establish existence and uniqueness of the

solution of these equations. Thus, strictly speaking, "solved" should be

replaced by "formally solved". However, if q(x0 ,x) delays sufficiently

fast for large xo,x and if its appropriate norm is sufficiently small, all

equations presented here are well defined.

i ,€' ' '.. . . . . . . .. .. _. . . . . . '. ,-' ._'/, . ," *. . . . ... . .''- . :g * ' "-: -.-.. ; - , '
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II. THE HYPERBOLIC SYSTEM

We first consider equations ( .- ( ) when a : -1.

A. The Inverse Problem

Let T 0 +f, 7f denote the diagonal, strictly upper diagonal,

and strictly lower diagonal parts of the matrix f. Let J f [zf],' .

for any diagonal matrix JZ, thus exp( z)f = exp(J )f exp(-dj). If
n nCn  Rn  kx " kJ fij

k C , x E R then kx k x kJ t ,kJ Let {fl denote the

ith zlIi = f1 (xijth component of the matrix f and ff(x + J : fi(x I +

i1 2 Nx + x J ) Rewrite equations ( ) in such a way that J > J > . >
n

Proposition 2.1.

A solution of ( ) with u = -1, bounded for all complex values

of k = k r ik and tending to 1, the unit N x N matrix, as k- 0
R I

is given by f + i(X xk), k > 0

(xO ,x ,k = 0
..(Xox,k), k <0

where ' x0,x,k) satisfy the fnllowing linear integral equations:

fx i(xo- O)kJ .
(Xox,k) :I + 0 de ( + n')(qj. t)( Ovx+(x-)Jk)

d~oe (q )( ,X+(o- )d,k), kI E C,k ,k :RX o r ( q 0. k n

or, in component form

nI
:ij .. I o i(Xo-,) Z k (jli j)-

t-£ ij ;. Zdi z--+r

Xo*,x,k) : ;J +{ doe :1X+(Xo ) k)

n
i(xo-o) 7 kz(jI-d)i

I d&oe z:1 (q,+) ( ,oX+(Xo )di,k),

0
+

k1  C, k2 ,..,,kn R

S....... ...
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where ;' 0 if i jand j 1 if i =j.

To derive equations ( )note that the Fourier transform,

*~ ~ (x0,m,k) = d %'(x,,k)exp(-im ), of equations .)implies that

,Y C satisfies n

'(x0,x,k) 1 fdmn e m-a 0 A(m,k) +
a 0( 2Tr)n JR

(2 1 r)n {xO d,, TR d~jf din eim(x-)-ia(xo-%O)mnj(qT,)( ok)
n n

where A(m,k) is an arbitrary function of m,k. Thus satisfies

1 (x0,x,k) = f dm e 0  0 A(in,k)

n

+ n JxO d ,f d J din eii ~c(O)mi~Ook(q)(
(21) Rn fRn

Equation (.)with a -1 and an appropriate choice of A(m,k) (see C18])

* implies (.)where we have only used

1 r d~ di m(x- )+ii(x 0- i
*( 2 )n JR 1R e ( f RO

n nn

f(x + (x0 - 0)J).

For real values of kone may relate .±and 4-

Proposition 2.2.

Let be defined by equation ( ,then

W +(x,,x,k) - (x01x,k) = Rdx1.(x0,x,X)e xxx0 )f(X~k)e- kxx0J

n

n

.......................
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hwere f(A,k) is defined via

f(X,k) - f dm T+(X,m)f(m,k) : T+(X,k) -T (X,k),

in terms of the inverse data

Jd)  -k+ 0iJ)  aM"
T+(,k) 2 7 d odRe T +(q L ,,ke k,X c

(2w) Rn+l

The derivation of the above result is similar to that of the

2-dimensional case (see [18]) and is outlined in Appendix A.

Remarks 1. Equation ( ) implies that the relevant integrants are

analytic in k1 for k1  > 0. Thus, assuming that ( . ) has no homogeneous

solutions, (xO,x,k) is a holomorphic function of kI for kI  0

Similarly for 4 . Hence, equation ( ) defines a sectionally holomorphic

function of k1 having a jump across k1  = 0. This jump is given by
1I

proposition 2 in terms of the inverse data T+.

2. Equations ( ), ( ) imply that i1(xox,k) is, in general,

defined for complex values of kI but only for real values of k2 ,. .k

That is, we solve ( . ) for k, e C, k2 ,...,k n E R. This is in contrast

to the results of [28] where ( ) is solved for k E Cn. Thus in a sense

we solve here a weaker problem and hence our approach is considerably

simpler than that of [28]. It is interesting that both the questions of

inverse scattering and of solvability of the related nonlinear equations

can be resolved using eigenfunctions of only one complex variable.

3. We note the remarkable fact that equation ( ) is solvable in

closed form. This is because its kernel is strictly upper triangular.

For example if N 2 then f22  0, f 21  2  fl (Xk)

IR dm T12 (X,m)T21 (m,k); similar formulae exist for any N.

R +.iI



Proposition 2.3.

The potential q(x01x) of equation (.)with a =-1, can be

reconstructed from

= -~x 27r~i 1 ' dk I dX i(xox ,k)e 0 (A,2ltk2"". k n)

* x iXk(x+x J)-iC(k -k )Xl + x (ki k Jii

* where can be obtained from

'1j(X0,x,k) + 2r fR dk 1

ix(x+x J) A ik(x+x J)-i[(k,-kl)x,+(k-k) 0 ]

RndXu-(xOIx,X)e 0e I.-Il 1

k k + iQ

The function f(X,k) is defined by (.)in terms of the inverse data

FT (X, k).

To derive the above note that (.)defines a nonlocal RH problem

in the complex k,-plane for the sectionally holomorphic matrix function

(x0,x,k). By taking its "minus" projection [30] it follows that

-i(x0,x,k) solves ( .Also if one seeks an asymptotic expansion of

I(xolx,k) for large k1 in the form 4(x0,x,k) =I + ,i(xolx,k2,. **,kn)/k1 +

0(1/k,) one obtains from (.)q -iJui1. This and large k, asymptotics

of ( )implies(.
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B. Inverse Data and Scattering Amplitude Function

We now find a relationship between the inverse data T(,)

k,X E R and the classical scattering amplitude function S(k,X). T~ ar* r

.4.

defined in terms of vi, S is defined below: Let cp(x0,x) be the general

solution of (.)such that Op(x0,x) -~ F(x+x 0J) as - - (it follows

from (.)with a = -1 that for large x., sine q -~ 0- becomes a function

of X+x J only). Then, by definition, the scattering operator Sis given

by G = SF, where G(x+x03J) is the value of as x 0 +00. Equation

implies that solves

(=x F(x+x J) + {n dm emxxJ d~o -i(+~J(q)e0

n

Let F(x+x J) 1/(2-,) n dk exp~ik(x+x0J)]?(k)2 hence

n

~(x0,x) 1 /(2-,rn fR dk T L (xojx,k)F(k), where T solves

n

~(x,x,k) e ekXO)+ (2 nfndm e~ f do 0 fd~e O (' O k

Letting x 0  w the left hand side of (.)becomes SF and the right

hand side of (.)involves the Fourier transform of

dcR d 0 d exCi(+O)(,) , Thus, the Fourier transform of SF

is given by:

(SF)(m) F +m ()n TR dk d~od q
4n n+l

*Definition 2.1.

The Fourier transform of the scattering operator Sis uniquely

defined in terms of S(m,k) where
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1 f -m(~+~J)

1m ;-J ik( i- J)

d____l Uq ,, ~ m,k Rn
(21T)n 

")fRn+l

and fis defined by ( ,while = TLexpE-ik(x+xQJ)] is defined by

(using ( )and(

L(XOlx,k) + Tx 0 ~eix0 k qx(o-OJk

En.

Prooosition 2.4.

The eigenfunctions i+ used to define T+ and the eigenfunction

used to define S are related via:

= mim(x+x J) -ik(x+x J)
LO(Xlxk JRsxk dm (xO~x,m)e 0 T~ (m,k)e0

- R dm l.±(x,,m)e imxx0J A(m,k)e -kx 0), k,m R Rn,
n

where A(m,k) is expressed in terms of T (rn,k):

A(m,k) -fdtr T+(m,-r)A(T,k) =-T+(m,k).
n

If one studies the steps involved in establishing ( )and

the above relationships follow by inspection.

Remarks.

1. Equation (. )can be solved in closed form. For example in the

2 x 2case A =-T+, in the 3 x 3 case A(m,k) = T(%k (m,k), where



-14- A

all entries of A(m,k) are zero except {A(m,k)} 13 = f d-t{T(m,-)}12 {T +(T,k} 23 .
R m

n

2. Using ( ), one may verify that the second and third equations

of ( ) are equal (see Appendix B).

3. Given .', equation ( ) yields T+, equation ( ) yields A,

and equation ( ) yields PL-

Proposition 2.5.

Let M(X,k) be defined by

M( f, t d .d e(q -)(0, , e-."
M(X k) (2-,7)n Rn l 0.

n~l

X,k Rn

i.e. T+ : +M. Then a) S(X,k) is given in closed form in terms of M:

S(x,k) : M(x,,k) - Rdm M(Xk,k)A(m,k), X,k Rn

n

where A(m,k) is defined in terms of 7r+M by ( .

b) T+ are expressed via linear integral equations in terms of S:

rn
T+(A,k) + ,T+ R dm S(A,m)T+(m,k) 7 ,S(A,k), A,k R R

N

To derive the above results first multiply equation ( ) by

l/(2r)n exp(-iX(x+x0J]q(xox) from the left and by exp[ik(x+x0 J)] from

the right and integrate over Rn to obtain

M(x,k) - S(X,k) = - dm S(X,m)T+(m,k) : dm M(X,m)A(m,k), x,k R
R Ri
n n

thew + projection of the first equation of ( ) yields ( ) . Also

to equations ( ), ( . ), ( ), ( . ) corresponds analogous ones

/Mania



for i+, T, P (where P(X,k) is defined like (.)in terms of i~)

To obtain these equations let ~i-~,T 4  T, M -~P. The

projection of the equation corresponding to (.)yields(.

IL
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C. The Characterization Problem.

The potential q(xox) depends on n+l parameters, while the

inverse data (as well as the scattering amplitude function) depend on

2n parameters. Thus unless n+l = 2n, i.e. n=l (the 2-spatial dimen-

sional case) the inverse data must be appropriately constrained.

Equation ( ) implies that the right hand side of ( ) will in

general depend on k2,. . k unless f(X,k) is appropriately constrained.

This provides the first method of solving the characterization problem

of the inverse data: Choose f(X,k) so that the reconstructed q(xo,x)

is independent of k2,.. .,k. This corresponds to the well known "miracle

condition" of Newton [24] in the inverse scattering of the classical

3-dimensional Schrddinger equation. However, it has the disadvantage

that it involves p-(x0 ,x,k) which depends via ( ) on f(X,k).

More explicit constraints on f(X,k) can be found by utilizing

the fact that f is defined in closed form in terms of T+, which are

defined in terms of analytic eigenfunctions. Actually T+ satisfy the

following "analyticity" constraints:

Proposition 2.6.

Let
i x(X+XoJ) -i k( X+Xo0J)

E+(xo,x,k) - dX e T+(X,k)e
n

Then E+ satisfy

E+(x, x,k) f d 0r+(qu$ )(Eox+(xo-,o)Jk),
II

i.e. the functions E+, E_ are analytic functions in the lower and upper

halves of the kl-complex plane respectively.

%:--.

.,'''-.% '=,' ;', .'" ... ..'' ;--.,i, -.-. - '. -" ." . -. ," ." . -. . -, ." .,-i .-' .i•-" "- ".- -" -,- . .-,. . - .." --.-. ..--.-. .'--
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To derive ( ) multiply ( ) by exp[iX(X+x0 J)] from the left,

by exp[-ik(x+x0 J)] from the right and integrate over Rn. Since w" is

analytic in the lower half kl-plane, so is E+; similarly for E_.

Remarks.

I. The above analyticity constraint is conceptually analogous to the

faddeev condition [23] in the inverse scattering of the classical

3-dimensional Schrddinger equation.

2. Comparing the above method of solving the characterization problem

to that used in [28] we note: In C28] the inverse data are defined in

terms of an eigenfunction 'i of n complex variables k,, .... kn* This

eigenfunction is not analytic with respect to any ki , i.e. 4/9ki  0,

and the characterization problem is solved by utilizing the symmetry of

au/ki j with respect to i, j. Here we work with eigenfunctions which

are not bounded for complex k2,... ,kn but which are analytic with respect

to kI , hence the characterization problem is solved by utilizing pre-

cisely this analyticity.

0. The N-Wave Interaction Equations Are 2-Dimensional.

The N-wave interaction equations for potentials with components

q13 (xox,t) are given by

ij -ij n i i ij n .Z ZJi (i 8-q qa
"qt : " ijqx0  

+  :7 ( i j d  -B ) xz " ( i - OL . )qi qZ .

- 0  Z=l 1 =1 Z

Equations ( . ) are the compatibility conditions of ( ), in the
special case that the J2 s satisfy equations ) and of

n n
Pt + r B P + i Z k [Bzl1J] =A,

x Z =l

. . . . . .. . . .



-18-

where A and 8 are given by Ali = -iq , . = () - )/(J' -

Hence, the formalism derived in the previous sections can be

used to linearize ( ), also the time evolution of the inverse data

f(x,k) is given by
n =

af(x,k;t) n i nk t

at Z.=1 2. Z f ,.t )

(To derive ( ) use ( ) in a similar way to that used in the 2-

dimensional case, see [30]). However, because of the constraint

the above formalism can be simplified.

Equations ( ) can be used in two interrelated ways:

i) From both equations ( ) and ( ) it follows that one may

introduce a new parameter k, which is a combination of kI ... $k

i ff
n •
Z (ilJ1  ) N P J- 3 k, for all i,j 1,..n

It is interesting that if equations ( ) are valid, then equa-

tions ( ) ere always solvable for k. This fact will be illus-

trated later for the general a case. Here we only point out that

if N=2 equations ( ) are always solvable. Hence, the inverse

problem for N=2 in n+l spatial dimensions can always be solved

using only one complex variable.

ii) With the introduction of a new k, the inverse data depends

only on 2 parameters. This suggests that if the JZ's satisfy

) then equations ( ), ( ) are reducible to 2-spatial

dimensions. This is indeed the case:

-+, .~~...... . '............ .. . . ....,. ., , • - .- . •. - .. -. , - ,.., ... . - ." -. "-, , , . -. -.-. -- . . , ,. - ,-, 4-. . , ' , ' . .
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Proposition 2.7.

Let J denote the matrix formed from the J z's, i.e.

1 2. p n

1 2 J "' p "" 2 p n

~N 3N N NN
1 "" p n

If equations ( ) are valid then

S 2 + -1 -2: +-ci , : a + b J 2  cc, a, b constants.

Using equations ( ), equations ( ) with c ; -1 become

LI4lj : (qy)lj

L21'2i: (qT 2j)

{ kLL + (1-a )L2 I k > 3, j = 1,2 ,...,N,

where

n .~ n
3x0 " Jli -- J2 ai(l,2" a x -

0  1 z" 1 z -2 Z=l 2

2.2

The transformation

1 2 2 1 .i

0 X0 ' 'l : XI' 2'2 1 2 12

yields

2 1Li  2 j

L + R -
1 2 1 1

Thus

S,............. .............
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L J on the characteristic coordinate T R.3' d~l

To derive the above results first note that ( ) imply that
W" (Jp 2 J 1 - 1 2 (d r - J )/(dl 1 2 )  . JP = a '(Jp1 - 1 ) + ,

p p p p r r r r p P p

which is the component version of ( a). Hence there are two inde-

pendent row vectors J1 J2, which implies that these exist at most two

independent column vectors, say J1 j2, and ( b) is valid. Thus

becomes

n n
1 + J2 Z b +

0 Z= z z=2
z 2

Introducing the coordinates xl, x2 and then writing ( ) in component

form we obtain

k "kj kj,~~~ ~ jk -k-k ,k?_ + (qY)k
ax 0 1 axl "2 " X2

Equations ( ) follow from ( . ), where for k _ 3 we use

, k + k, _ p), p = 1,2. Thus there exists only two importantp : p p £ p

operators L', i = 1,2. Using x0 = ' l =  '2 = + fXo these

operators become /'0 - J / / 2 For the existence of

a characteristic coordinate -c we require

1

The first equation above determines 3 (see ( )), the second deter-

mines R (see ( .

Manakov [31] also suggested that the N-wave interactions are re-

ducible (see also [32]).

. ...-. ..-.-
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E. Direct Linearization

The essence of the "direct linearizing method" [33] is the exist-

ence of certain linear integral equations (such as ( )), the solution

of which are related via some formulae (such as ( )) to the solution

of certain linear eigenvalue problems (such as ( )). Clearly, the

above formalism provides a formal solution of the inverse problem.

Also, if there exist nonlinear evolution equations related to the under-

lying linear eigenvalue problems, such a formalism provides also a

formal linearization of the nonlinear equations. Further discussion of

the above method for one and two spatial dimensional problems can be

found in [34]. Many applications can be found in [35] and [36]. Here,

we only point out that, although the direct linearizing method is both

straightforward and effective in producing special solutions, it is not

suitable for solving initial value problems. This is because, given

q(xo,x,t=O) it is not clear how the measure-contour-inverse data can be

chosen (see below).

Proposition 2.8.

Let u(xo,x,k) be a solution of the linear integral equation in k

2(ri 1- J

dXu(x,x,)e ,k.C R

Sk I  k

where the measure dQ(X,kl), contour C, matrix f(X,k) are essentially

arbitrary. Assume that the homogeneous integral equation corresponding

'" "> "'""- " ; ,' ." *" ': "- -"" " , . " .- "1. "i " ". . .. . - " ' " i- - " - ,. .. i :
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to ( ) has only the zero solution. Then

q(x0,x) d - d(Xk diu(xu,x,X)e iX+x0J)

2-r l{OR0
n

^ ik(x+x 0J)-i[( [ -k(kl-kl )x0J] ;
x f(X,k I ,k2 V....,k n)e k

p

solves equation (

To derive the above results, define the linear operators Lk,

P via
Xo,x,f

n
(Lkg)(x 0 'x) "3x g Z (jg jz +ikJ,g]),

0

Xx,f 9)(kl) C do k cI

n

iX(x+x 0J) _ik(x+x0 J)_i[(( 1 0k)x+(kl-kl)xOd ]
d)g(xo,x,A)e f(x k k

k k-

By direct computation one may verify that

CLk Px X, f].q(xo,xk) - - do(Xk 1) dXg(x0 ,x,X)e X xoJ.
C n -.

^ ~-ik (x+x J)- iCF(k- k )+( k,-k )xoJ ]
x f(X ,kl ,k2 ,... kn )e  0

Equation ( ) can be written as

*(x 0 ,x,k) 0I + Pxxfg)(kl).

Applying the operator Lk - qI on ( ) and using ( ) it follows that

(Lk-q)v (x0,x,k) P Px0,xf{(Lk-q)u(x0,x,k)}.

Hence, assuming that ( ) has no nontrivial homogeneous solutions the

above equation implies (L k-q) 0 which is equation (

-"-.""-;. ,,-.", -".". -/ ".".."." .... " .> . . _: L .- 1.- -_ ..-;: ";-; ii >,i)i7>/ -;: i-"-
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IIl. THE GENERAL a CASE

We now consider equations ( )-( ) for arbitrary complex a.

A. The Inverse Problem

Proposition 31 -.

The solution of ( ), bounded for all complex values of k and

tending to I for large k is given by
°il IR iB Xo 1 2x ,- Ik

S(xoxX,k) 'j + sgn I R d(Xd l l e -

2-r (x1-,)-J(x 0- 0

2 d1odl 1 -

nn
(xn k) k E C "x (q,)iJ(:,O ,, ,X2  (xl- l x , . , n- X - l) C ..

2 1 1 J1 I.

iiwhere i is defined by

n J J xl(ak2 ) -i, (x{xvk I0 2lk 1], k : + ik~l"

VI a Xo di I], k kR Z

Equivalently i '  satisfies

ij sgn( 1Jl) j. dl0 d ( 1 dm2 ei e (x - m))

iJxo'x'k: 2Tri R dd (2T )n-1 R.
Rn+ 1  (2Rn-I1i

is iJ (o-x l l ,k) •
e (q i)'J (O k

1 (xOi

where

2 n
d2 .. d n ,  Z:(~)- m( =2 z 1 1.

To derive the above note that the exponential of the second term

of the right hand side of equation ( , ) involves

n nE ij i%: E m (x -,) - ia EI [jil m + (J i j )k ](xo_,) The real .-
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part of Ei is iven by :Z [i d mZ + (Jd-J 3 )(ck )l1(xo-ro)-Ij.m. +

Z= 1
The second term of the right hand side of equation ( ) also involves

the integral I J -
O  which equals _dx 0  " do m +

f r rM, 0 _-

+ d O  dmi, for arbitrary MI. Since the third term above can be
JR1  0M 1.

canceled out of ( ) with an appropriate choice of A(m,k), it follows

that one can always achieve boundness of u for all complex values of k:; Ixo
Choose M such that E is less than zero in d and greater than zero1" -CO 1;"
in f dx , i.e. , - /C J1 for a 1 1 > 0 (otherwise change sign).

xo
The m 1 integration can be performed explicitly: The coefficient of mn1 in

E is i(x 1- 1) -iaji(x 0 - ),hence this quantity will appear in the
n

denominator. Also E1J evaluated at mI = I becomes i Z m(x -,) -

z= 2
x- /J + is' (x x-, l ,k). Hence ( ) yields equation

by using the fact that the integral over dm is a product of .

functions with arguments ;2,= x - (xl- ,/Ji

Remarks.

1. Equation ( ) with n=l is equivalent to the analogous one of 2-

spatial dimensions, e.g. equation ( ) of [18]. Equation ( ) actually

apoears simpler because the rn integration was not carried out in the

2-spatial dimensional case.

2. Equation ( ) is also equivalent to that of [28]. The only
- i

difference is that the exponential of [28] involves (x _,/J instead of

X- ,l)/d I of ( ). However, these two terms are equal due to the

existence of the underlying ; functions.
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i i

3. By letting x, -x + J xl/J, = 2,...,n in equation ( ) one ,

may obtain a more symmetric equation for ui
j "

i J n1 JiI

j J 2x n ij i

2i n 1

J2.
X(r' 'fl x2 + Z19 ..."'X 9 x k) -

where g ij is derived in ( )

Jii

J2

4. Equation ( ) suggests that 23iJ(xo,x,k) : 1ij(xoXlX 2 - xI  '

J1
Xln

- - ,k). It also suggests that in the proper coordinate system
n ".

equation ( ) should be in some sense reducible to only 2-spatial dimen-

sions. This is indeed the case: Equation ( ) in component form becomes

n n
+ zi J + ia E k (J, J , : (qij3.x Z x zzo Z=l z Z:I

L e t j ..X
x 1 x x r r-2...n

-_,i~ 1  = r x -- , r=2 .n

-0 o ' 1 1 -r r I .

i.e. 3/3x0  3/9= /3x 3 r r 2,...,n, a/x / -

n
/3Jr /j -r Then ( ) yields

.r'2 1

"- u~~ij .Iin i )i
+ aijI + ia 7 k ( _ :

• .-0 -I z I

5. Equation ( ), as well as equations ( ), ( ) indicate that

the direct problem associated with equation ( ) is in some sense 2-

spatial dimensional. However, the 2-spatial dimensional results are not

.oi o

Ni

. . ."-
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, directly applicable due to the shifting in the arguments. Let us

illustrate this for the 2 x 2 case in 3-dimensions:
* 1 5.,

11 11 I 121 ~

(Xox 1,x2 ) 1 + (q )( X O'9 l' x2 (xl- l) 2).i 2

J121(XlX2 21( 2 11 ,El 2 - X-,l -

Clearly I  appears with different arguments in the two equations.

However, one may still obtain a solution by iteration. The same is

true for the equations corresponding to (

Proposition 3.2.

a) The function 3ij defined by ( ) satisfies

- ei8iJ(xo'Xl'k) ( - d p j
(x 2xi 0x )(J - dJ),

and

i n a

(k) (k) i(kiJ(k)), k1 ( (- kE Rk I

k j  k2,...,k : kn,

where & iJ(k) denotes &3J(xo,X1,k) and =1  1 + ik 1= (kl 1i

R Zl I R il

i I i

. b) The functions i , 
i defined by ( .), ( .) respectively

• sat is fy 2

,#";':!II =(m) + ai J(k) - ai(M) - 8iJ(k) : j2(m-M) + 3Zi(XiJ2(k,M)),

2 n
'"~ i i i Jk R  kr

we J (k - M ot ,k ), X k + M, k ), r = 2,...,n.

SR 1
b) To derive equation d ) just use r eci vlk T -

tderive equation ( ) note that

n J

... .. . .. ... X J k M , r 2 ...n .>
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jZ jj i J

r 1

But

jZ J. $1 js JZ..J ( - J') (j, - j.)
r r r +r r r (r r

".-J K - - -k) : ," - [( J )o21k -

*. r2. 1 ,2.I J .

i "l j

1 l7 J 1 J] '

Thus
• 1 (j - 1

;L~k) i3k)= --{(J 2r-Jir)xo II2k - r-Jr x1 (a kr) ] +

1 (JJ - l a

CI r:l r z r
r 1

Hence (k) - 3J(k) : SZi(kiJ), where all k's are invariant except k
n

which satisfies kij Jk ,(ak
1 ) (ck) - (ak 1 

- )/J•11 I rl ri r r

To derive equation ( ) note that its left hand side equals

Sn XoIol 2kr

z(mr - M)(X - xI - + z(jz -. l).
r=2 r r r z rl r r

(JZ Jl) n (kl) n J
1r Xlr[ " i( r)I ( I r2 J
Jl r= 2 J 1 GI r

n i (kr

r - r
Xl [K I + Mr]"  /

r=2 1 (
, kij = k

Hence, equation ( ) follows where is defined by = k forII

all k's, (aiXJ) = (zkr) + M r 2,... ,n, ( 'J) (ak'J) I
n r I rI r' 11

n Mi i
r= 2 

..,

Using the above relationships, L/;kp, i.e. the departure from
p

holomorphicity of the eigenfunction ,i can be evaluated:

-'~ ~~. ' " " " . ,' ,", ,'•. ' . " " 
'  

-' ' . . -, - .,' - ' -

d" o° .° ."""°." -'- -°.' . *"- . . ... . . . . . . . . . . . . . . .,.. . . . . . . . ..-. . . . ..". . . . .... . . . . . . .%" " ' " . - , .- . .- "" "--. .
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Prooosition 3.3.

Let ,4i j be defined by equation ( ). Then

;) (X .j )e (Xo'Xl k) I
kp i~ k ,j (2 )n' l  :"..

R dm2 ei cL(~) j(k m)ji(xO x,X ij (k,m))Eij,

n-I

where 3 , , are defined by ( ), ( ), ( ) respectively,

E is an N x N matrix with zeros in all its entries except the ij~k

which equals one, and i , are given by

v r i3 i J(r0'I 'k)iai1 (r"m) )i"k):.°
1 _ , TiJ(k,m) d de (q!) (10 ,

4,ri IJlall R n+1  "

To derive equation ( ) note that ?u,9 3/k satisfies the same
p

equation as plj where the forcing ij is replaced by
Mii2 -j1i.

y (J -j)expriBi(xoX,x l k) ] ( n _ dM2exp[ia (x,M)TiJ(kM)/(2 .
* p p 1 )R ~J n-l

Using : ' '3iJ ij it follows that the forcing of the equation satis-
ij 13

fied by 3i/ Fjp is given by the above times E Hence
p

u _ ) dm2TiJ(k,m)Ni (xO x,k m)
3k i j J p 1 (2_ 1Rn .

p T()fl n-I11

where N.. is a matrix valued function satisfying an equation similar to

that of u but with different forcing:

I(xox,k) = I + (Gu)(xoX,k), Nij : ei (iJ+i)E + GNi13

Equation ( ) implies that N.j (0,...,Nij',O), where the

components of the vector ij satisfy

.. -. . . . , . . . . . .

. . . . . . . . . . . . . . .. . .. . . . . . . .A
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M i ( 13 (x0,xlk) + -'i + zjIN'j(xx k +e-j 0(x0,x kM).

Multiplying by the negative of the exponential appearing in ( ) and

using ( ) it follows that N (x=,,M) : I x, Ai k,MM)).

Hence

(0,.... (xox,'IJ) ,I(x xX )E=j.

Using the above in ( ) we obtain .

Proposition 3.a.

The potential q(x0,x) of equation ( ) can be reconstructed from

:q(x x) - dk' dk' _ - (x, X kl I .. pk '-

S JR2  PR PI

p

where u/J3k is evaluated by equation ( ) in terms of TiJ, ij The
p

eigenfunction ,I is reconstructed by
(Xox,kI ,9 .... kp,.. ,k n )

,*i(xox,k) I + dk' dk' k k' , pl,...,n.
SR2 PR PI p
2p

To derive equation ( ) inverse 70 in the variable k . Equation

then follows by a similar argument to that used in Proposition 2.3.

Remarks.

1. The forcing of the equation for u/ k can also be written as

Z y (J, - d )exp~iB' (Xoli k)]t (k;x2-xl 2 I .. . X-l /Jl)ti , -• ii
p p2 21 nIn1 j

where t = dm2expiO i (x m)IT ij (km)/(27)n-I

JR --n- 1

- 2. The results of the Proposition (3.4) car, also ne directly verified

• .(see below).

I " _" " .' -- ,r ".- ". . ."-' " " " . . . .. . " " . .



S. The Characterization Problem

Equation ( )indicates that there exist n inversion formulae

for .Furthermore equation ( )indicates that, unless the inverse

data T' are appropriately constrained, the reconstructed q will de-

pend on k. We now show explicitly that q being independent of k is

equivalent to the equality of all the inversion formulae. This is a

direct consequence of the following result:

Prooosition 3.5.

Let

n n
(Lkg)(xo,x) - xk3,]

x0  Z~l z Z=l

(P xkkg)(k ) L dk' dki
p p R ~R 1R

X Y(i -i 12 dm'e i'xolxk )TJ kp mgxxX3 P ',)
13j p p (2-,) n- JRn-l

k -k

p p
where

£ (x0,xjkjm) 3j(x 0, .j kk
12 x lk +' a (X~) k~ denotes k1,k 2'"' .,

Then

ii_
CLk l ,xk- g](x,x,k) J dk' dki (I J1

xo p k- . R ij p p()nl nl

dm 2e i E:1j(x 0,x,kpm) T.j(pin g (, x i(.kp, m))E~

To derive equation (. )note that the term Lk(pX k g) involves

k .~x~ - I
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nn n ,

+ 7 Z (kp ) ]qE + Z J - gE i c k£[J,gEij,
zX l 0X X 0  Z:I S.

while the term pxo'xlk-kp(Lk9) involves

n n
* +  gJ E + i Z X J(kp )[Jzg]E0 Z 1 Z L "

Two of the above expressions cancel out, also since (gE. i)' is non-

zero only if j=j' in which case equals g

n *.iI*I n ,

Ix 0  1~ ;x a £21 X Z

[(3 + C7 jI E If
I

i'g j )(gE i (9, _ )gi'
dZ'gij i  Z : ZJ Z l

([d ,g]E ij} [3g] (W - J )g
i 'i

Hence, LkPx , ]g involves iag timesHence, [Lk ,x,k-kp.

n i Z - n Ji p+ ( R
Z k ( + - J" (k k) -

Z=1 2. 1
i'  n  i n i'n i' i) p p"i !i

-m - + ( - 3 (ik + k + m ) -
Z2 z'2 . Z z=2 Z Z 1 I .R Z

n Pl cR l
1i_ j n 3

(Jl - J')[ik + k R - (k R k ) i  m2 .
1 1 L I l I~ . +~

The above expression equals

if 1 i-. P, i f-%

k,.-J 2 - . - z k (3 _ (k k)(J)
2. Z Z 1 Z 2 p

which implies equation ( .

. *
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Remarks.

1. The above proposition implies that the direct linearizing method

is also valid for the general j case. The relevant result is directly

analogous to Proposition 2.8.

th
2. q = [L ,p p p ,...,n where the p expression is inde-

k' Xxxk-k

pendent of kp. Suppose that q is independent of k ,k , thenp p n
EL]]p=CpI i. Hence ( xp k),#i = (p)

kP xo~x k-k : K [L ,xkk Hc x,xk-k ,xk-k

i.e. the pth and the rth  inversion formulae are equal q is independent

of both kp, k,.

Proposition 3.6.

a) Assume that /3k, is given by equation ( ) and that
p

TiJ(k,m) is given by ( ). Then

n (kM) ,m-M)T-j (K,M)L'JT13 (k,m) + Z -YdM T (X (,MmM)(k )
Z= (2T)n

- l JR

X [(J.-ljJ 1 ) -j (Z.-J 2)(j 'KjZ) 0
p p rr' r r p-p

where

rp p p r r
r p

b) Assume that 3u/3k is given by equation ( ) and that
p

u/;kr3k is symmetric with respect to r, p. Then T i(k,m) solves ( .
r p

To derive equation ( ) note that

.. .. ( ) U(k)  -ji j)3u(k)"ij:d odrl e  tlq[(Ji j . . ) )1i

rp jR p 1r3
R n+l r p

P P r , " ,.-
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(2. )-I i d~o. le  "dM 2  
7 Y .e

( n+- Rn-1 Z,j'

T' -iiaC~ _ )( z j )_a _ )(jz dj ) (j (k,M)E; ,i

p r r r r p p

Since (;jEZ is non-zero only if j = j', evaluate the above at j J'-

Also equation ( ) implies -&iJ(k,M) + EJ(kM) : -iZ(x (',M> -

d" d lexp[-i ZJ(XZ'(k,M))]exp[)-iam-M)7)t(m-M), and since i Rn -0' I1

Rn- 11

x(q")ti( ZJ 'k,M)) T (j '(k,M), m-M) , equation )follcws.

To derive the second statement of Proposition (3.6) first note

Lij ei ij(k) 0, Li ij 2(kmj ,ro ' p '  (~) rp k,.

ii i
3 i(k) + i(m) + 3 (xJ(k,m) + a (M) i'(k) + i (M+m),

x xi'i xi (k,m),I) x iJ(k,m+M).

Equation ( ) follows from ( ). Equation ( ) means that, with

respect to the operator Lr,p' .(xij) should be treated as if its k's

were not shifted; it is an obvious consequence of the definition of \

To derive equation ( ) use ( ) to substitute for

i i (k,&)) a (M) + 3 J(k) - (m) - BiJ(k) - i'(M-m). Equaticn

-follows from the definition of ,

-(J
1  - .1 .

R 1  1 .2=212 --

Hence
i.- ji J

"1 (\ (k,m),M) 'K - :- - K1 1
R 1R J1 I J

n (J'JJ n
7 (k + --k z m--

'.. 2 R.. ............ --



* Op

RT k (k, +n m1 +- tm i
I U Z=2 "'R Z I 1I 3i z 2 Z1

Cy(k a2  Z . .
R J 122 'R ~ I U

n
* ~ ~ ~ (m + M., -

Z=2 Z R

Let

2 2 r 2 (~m ji
dm y~~n rpeT(km X E

k3k(2 T) n-i I, R 3
r p p r -

Using (.)it follows that

Ali )n- dm 2y ie i F (k'm) (LiJTi*J) (XiJ E .+

(2 nIijRrp 13

1 2 2 i V 1C: &' kn)+E &3 (Aijkm)M)JTjkm
(i)2n-2 ,jJ 2 TUkm

T 13 ,(i3 (k,m),m) + 1 2n2 Z dm2 dM2.YiyI

(21T R(~m +2n-2

ij E if

zero only if i~j in which case equals E it follows that the above should

be investigated at i=j'. Then the first term of Ai involves

fdp y 1 expCie 3~j(k,p)](L' 3T1 3(k,p))i(X' (k,p)), while the second term.rp

involves (using equations (.)and letting rn+M =p)
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1 1~ ii ij,~,i j,"dP dm - expie J(k,p)]T ijTm)Ti  kJ(k,m),P-m)i(X''j (k,p)• Thus

4i,= 0 implies the "T equation" ) (to obtain the identical variables

of ) let i' - i, i - ., p - m, m -) M)

c. A Special Case and the Hyperbolic Limit

Equations ( ), ( ) indicate that one may introduce a new
n

parameter k, which is a combination of k, iff Z (J -Jj)k =  
• k

for all i,j 1 ..... ,N, i.e. iff equation ( ) is valid. In this casen n
Z (J-J3)k, 1 j ) 1 (J-J )(k)i/J,

Z Z 1~ 1kad~J. J . (~9and hence 3'i(x 0 ,xl k) becomes ,J(x,k)

If N=2, or if equations ( ) are valid then equations

are always solvable for k. To fix ideas consider the N=3 case. Then

equation ( ) is solvable iff

n n n
(d4-d )k Z (J -)k .  l (j 2 -j 3 )k

z 3

1 1 1 1

However, if equation ( ) are valid then

1~~ 2 1 1

Multiplying the above by k2 and summing over Z. we obtain ( ). The

general N case is a trivial extension of the above where one uses

(jl-j2)/(JI-Jl) = (J'- )/(l-l ). From the above it follows that:

Proposition 3.7.
n̂ 1 i1 J,, in equation ( ),

One may always introduce a new k Z r (J /Jl

provided that N=2 or the J.'s are constrained according to equation

( . ). In this case the inverse data depends only on n+l parameters
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(kR,kiM 2,... Mn) and the characterization Problem is bypassed. This

is consistent with the fact that the T equation now

tThe analytic eigenfunctions ,; used for the solution of the hyper-

bolic problem can be obtained as a limiting case of the general a case:

Let a : -+ + ia1, k = (kR, al), k 1 - 0+ . Then the limits k, -4+ CO
R c I

yields eigenfunctions " respectively, analytic in the variable k
R

The details can be found in [28].

APPENDIX A

In this appendix we derive equations ( ) ( ) Equations

can be written as

x i(x0 -,)kJ 4j _d~of Rj d~dm E(xo- .oX-r m)e +q ) k  ;:.

2n

i(X CEO )kJ

+ . "JI

+J , R d~0dm E e + (q,,'),
fR 1  JR2n+

where E exp[im(x-i) + i(x0 - ;o)mJ/(2, )n Thus if A = a - thenri(Xo-%0)kJ+!
=d ,d~dm E e i~ O)k -~u -rq ++

2n+l

xd i (xo-' 0o)kJ
+ jd~0j d~dm E e 0

R 2n+l

We wish to prove that A equals the right hand side of equation ( .

or, substituting this A in the above and canceling the exp[-ikx], we

need to prove that

i XoxJ i(X-k)x i(xo- o)kJ
dx,u(xox,x)e f(x,k)e :R d~oddm E e

Rn R2n+1

(T+q"- ,T-q ,+)el 0 kJ +

-.--" . . .:-- ",-- --. ., , ;, ".,.. . . . . . .-.. .".. . . . . . .- ; " " -* " - . . . . . .-
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-x ri(xo- 0)kJ 0 ij0XJ* k
+ 0i U4o dJ e u_;,,xe f.ke

2n n

However, equation (A.1)_ implies

i0X iXk~ 0j i(Xx
dX~j (x,,4 (X,k)elX) dXe 0 f(X,k)e

JR nJ

3nn

The integrals involving .x0 of equations (A.2), (A.3) are equal.

To prove this let rn+k -m, m-'x- m, alternatively use the following

property of E:

Ee 0 0  i()kJ ~ i(x ;' )kJ i(X-k)A(x-,J(x 0_O))= Ee 0 0 ~x Ae(X-k)x
EeAe -Ee e

Hence (A.2), (A.3) imply (by letting X - in the second integral of (A.3)),

6e ix 0~ .d f;,ei(-k

3n+ 1

xf(X,k)e dd 0 mI(A-k)x dd m e (x0 0)(k+m)J+i (x-r)m

Multiplying and dividing the second and third termns of the above equation

by exp~iX(x-lz)] and exp~ik(x- )] respectively, we obtain

f( i,k) = RdT(-XfXk =+m~k M- k)
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APPENDIX 3

We now verify that the second and third terms of ( ) are

equal, i.e.

dXt{iL(x,X)E(X,x)T+(X,k)E(-k,x) + u(x,X)E(x,x)A(X,k)E(-k,x)} : 0,R L +n
where E(k,x) = exp[ik(x+xoJ)]. Substituting for u- in the above by

I0

) and replacing A by ( ) we obtain

R dX,.i L(xX)E(Xx)f dmT+(,\,m)A(m,k) - f dr±L(xr)E(rx)T+(rX)A(Xk)}E(-k, 0=,O'
n n n

which is obviously true by letting r -m.
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A Multidimensional Inverse-Scattering Method

By Adrian L Nachman and Mark J. Ablowtt:

A formal solution of the inverse scattering problem for the n-dimensional
time-dependent and tume-independent Schrdinger equations is given. Equations
are found for reconstructing the potential from scattering data purely by quadra-
tures. The solution also helps elucidate the problem of characterizing admissible
scattering data.

In this note we present an inverse-scattering formalism which applies to a
variety of multidimensional problems. Our procedure is based upon the use of the
so-called "3 method," first introduced in the study of inverse scattering problems
on the Line by Beals and Coifman [1. 2] and successfully extended to two-dimen-
sional problems in (3]. This method gives a systematic procedure for finding not
only linear integral equations to reconstruct the eigenfunctions and the potential,
but also necessary conditions which the scattering data must satisfy. These
characterization conditions also turn out to provide an alternative way to recon-
struct the potential directly from the scattering data purely by quadratures.
Moreover. these conditions may help explain why there are so few nonlinear
evolution equations in dimensions higher than 2 - 1 known to be solvable by the
inverse scattering transform. We give here our results for the time-dependent and
time-independent Schr6dinger operators (for earlier treatments of the time-depen-
dent Schr~dinger operator in one dimension see [41 and [5]); similar results for
first-order systems will appear separately.

Our approach is to first study the operator L, = a a/t- -- - v(t, x) with
a - -iial any complex number with at 0 [here (t.x)ER xR' and .1.
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a2/ax ." 8/ax ]. The case ai =i will then be arrived at by a limiting
procedure, One of the advantages of this route is that it always leads us to
Green's functions with the suitable symmetry properties. For Lhe classical time-
independent Schr6dinger equation our procedure yields precisely the Green's
function introduced by Faddeev (6]. Subsequently Faddeev [7] and independently
Newton [8] used this Green's function in their study of the three-dimensional
inverse problem. Although we arrive at the reconstruction by a different route.
our characterization conditions parallel those of [7]. More recently, in a series of
important papers [9], Newton has carefully studied this problem with new
methods having the classical Green's function as their starting point. We will
indicate how our characterization equations compare with his "miraculous"
condition.

To begin, we assume a. * 0 and look for eigenfunctions of L, of the form
4 exp(ik-x + k rt/a) where k S C" , k.x - kR.x - ik,.x. k= k -k, and
find that satisfies

oa, .11A. + 2ik • 71A - vA 0. ()"

The Green's function we use is given by

1 ff e" " ..
Go(t.x,k) = (2d)r.- jj ,{ 2k-{ d .(

A solution uo of (1) is obtained by solving the integral equation ,
I + - G(vl.i) with do the integral operator whose kernel is Go(t - t'. x - x'. k).

In this mostly formal presentation we assume for simplicity that v(t, x) is such
that the integral equation defining 4, has a solution for every k - C"

Differentiating the integral equation for ., with respect to k, produces another
solution of (1), which can be expressed nonlocally in terms of 4 using the
important symmetry property of G:

exp( - t(.x, k,, j))Go,(t, x. k , k,) =Go(t. x. ,, a:,)

whenever (3)
, OR O R  /

with /3 (t, x, kR, k , ) = (x -2 tkj)'( - kR). We obtain
OR

( t,x, k)

-1 c.,-.( a 2',

(2 O " R  OR ,,,

x r,(k:, kr j ) o.x . k,) d l)

o-

f' .4
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where the scattering data are found to be

o(k.,k,.) /jexp[ - /,( r, x. k, 0 t.., )A,( r. x. k) dtd,.

The general Cauchy integral formula applied to the variable k, together with the
fact that A -1 as 1k,, - allows us to write (4) in integral form as

g,(tx, kR,kt) 1 - 1 j f , k.R ,.-__,k..
.(2) ff) fk, - k , k, k

x a-

x o~lk;, )ot, x,,k;)dkl dk' , d . 5

where in the integral k', (k,..... k, ..... k.), and similarly for k,. Equation
(5) is the reconstruction equation for u.. Comparing the large-k behavior in (5)
and (1) yields

Zi 0. x.k a,k I)dkR, dk" (6).-
o(,, x) = d I6)

The fact that (when n > 1) the right side of (6) does not depend on k, (i * j) or .
is analogous to the miracle in the procedure of Newton: however in our case it
may be deduced from the characterization equations which follow.

Our "characterization equations" can be found from the compatibility condi-
tions d , /Alk,dk, = 3aM/a-k 3k,: differ:entiating (4) and integrating by parts. we
obtain equations which suggest that T, satisfies

,;o 1 kT'R , T, (6a)

Xv(T.](k.j) f[(j;- k,,)(j, - ,')- ,-k,)( ,,-

-V,[, ](" )': (-kI ).1R 1

T. ,

× 7",( k, .-. . . .. ')"'. . . . . . .(b... .
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It is also straightforward to check (6) directly from the definition of T,. To avoid
redundancies we keep only the equations (6,) We now parametrize the surface

aR R

in (k, ) space in terms of (X, wo, w)GC" txRxR' as follows: kR =

-z"XR.- ,/2 -atw 0 w,/(2w'), kR - w1X.R, - w/2- aw0/( 2 w:), j > 2
k,- F >wx, + a.ww/( 2 w), k, = - ,, aww/( 2w-): - T"-

+ w/2- awow/(2w'), - X + W'/2- atwow/(1w'). In the new varia-
bles, (6) can be written in integral form as

I[L(x,wo,w) = T (x,wo,w) - -jf .1,T;'.~wV1 , [ T1 w- x., -w ).

= O(WoW), (7)

where X'= , x,) and D(wo,w)= f'e -':("r v(t. x)dtd.x. We
have used the fact that when wo= 2k1(S-k )/a, and w=,-kR are kept
fixed, T(X, wo, w) -- (w., w) for large X, (if w, - 0); this is the analogue of the
Born approximation.
It seems reasonable to conjecture that (at least for small perturbations V) the

main condition needed to characterize scattering data is that 1.[Tj(X, wo.w) is
independent of X and j and has suitable decay properties in (wo, w). Moreover, it
seems reasonable to solve the (re)construction problem directly from (7): namely.
if T, is admissible, compute v by taking the inverse Fourier transform of (T).
As opposed to the Born approximation, this formula for reconstruction does not
rely exclusively on high-energy values of the scattering data.

Next we treat the case a = as the limit of the above. The limit of
,k 6 (t, x. kR, kf) does not appear to provide enough information (when k, - 0) for
reconstruction purposes; we consider instead 4,,(t, x. kR, aRk r). Since

G,(t, x, k., ak) GL (r,x, kR,kr)

Isgn(- ) -_ (.

as a- (aR <0), our limiting cigenfunction ,Lt. x. kR. k) solves the integral
equation /1 L 1 - G(VAt L); , r (t, x. k ,k( ) is a solution of .L - AA -A i k,-7

-v -0 for every value of the parameter k,. Taking Limits in (5) yields the

.....--i, ...- "--- ..-... .. . .. .-..-.-........- - - . -.. . . . - ' . .- , , . . , . , , - ' ,



A Multdimersonai nverse-Scattering Metrnod 247

integral equations for reconstructing .,:

= .._ (k, -k; 9(k;-kf 1,,l(t, x, kq. kr) = 1 - ( .r) %

- k,)T-(k R.- k; u %,

X exp( + iL( t. x, k k', J)) dk dk;. d4, (8)

where 8(.) is the usual Heaviside function. Ig.(t.x.kRk1, )=(x 2tk,)
(- k R)• and the scattering data are given by TLkR, kr,.)=

CXp(- 1BL(t, x, k.R, k1. )] (1. x)AL(t, x. kR. kr) drdx. The characterization
equations (7) now become

IfTLI[(x.wi,w) TL(x.WOW) iJJ..ff XR, - X ,-O 10 x' -X -iO.'

= o. (9)

with the obvious modifications in the definition of V,,[TLI and in the change of
variables.

It should be remarked that the above limiting results can also be obtained
directly starting from the Green's function G. (the derivative with respect to the
parameter k, essentialy plays the role of 3).

When u does not depend on t, the equations above formally yield the

following results for the time-independent Schr6dinger operator (n > 1). Again,
all of these results can be independently established without recourse to this

derivation (assuming, as before. that the potential is such that there are no
exceptional points in our integral equations). The Green's function is now

G k(xk, k,)= JG( t,x k, k,)dt

{2,-r) z -1 : k, , 0 - k R' -

II

S. - .,. -

. . .. .. . ...,. " . . ."' " '' "'' ' '* , " 
j
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and the reconstruction equations are

8(k, - k(l 8 9k'j,( , , kj) I - ,r "-;
(, - 0 - kR, - k , - i0 ,

L- k,,)T,(k, k;.k ) exp[ix.(- kR)] dk dk;, dj

(kx:*o, k,.0O), (10) .

where T,(kR, kj, j) = f'expt- ix(J - kR)1(x)g,(x, kR,k,) dx. Using the same
change of variables as before with w = 0, we can write the characterization
equations as

x[() = 1xo x, -,o)
1, T (1X,W T(Xw f1 4 f

X.,X,-1 X RXR11 -

x T:, [T(x',w) dx'R d, = b(w), (11a)

where

JTJ(k . ) =- ),- ,)-( :- kR)( - ;)J3( I kR)

x 8( kf.( Tk))T,( kk,. ')7( '.k ,. ) d'. (11b)

If the scattering data T, are given, then we use (11) to check admissibility and
reconstruct v. Suppose, on the other hand, that we are given the scattering
amplitude A(kR,z)=iexp(-ix.( -k,)Iu(x)..ixkR)dx. with A- corre-
sponding to the classical Green's function

G (x.kR) I exp(ix. ) d

r)" J 2 - ,-o 1

A is related to T, via

'",, ,J A *,. ) "0( k, - , R)

.( k k , ' ) A  .(12)
b.o

_.2 w- ..- , ',.' .-. ' -' '.,'',-' '.,',',, \''. ' .,'',."-."-& .',. -" " ,' -, "-" ." ." ." -. -,". - ".-' .. ', '. ', . '. .
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Solving (12) for T, and checking that f[TJ(x.w) is independent of x and j
should now be compared to Newton's procedure. where. given A. an integral
equation is solved to find a candidate for the potential. which has to turn out
independent of certain additional variables.

Finally, note that (11) is equivalent to the following statements together: (i)
dT,1,/<f - 2Tz.Vt1 [T], and (ii) lim, - =(T - 6) is. as a function of XA. the
boundary value of an analytic function in the lower (respectively upper) half
plane with appropriate boundedness properties. Any solution T, of (12) can be
shown to satisfy (i), while (id) corresponds to Faddeev's condition for admissibil-
ity.

A more detailed study of the equations presented here will be published
elsewhere.
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Multidimensional Inverse Scattering
for First-Order Systems

BY A drian L. Nachman and Mark J. A blowi :

A method for solving the inverse problem for a class of multidimensional
first-order systems is ziven. The analvsis yields equations which the scattering
data must satisfy; these equations are natural candidates for characterizing
adzrissible scattenng data. The results are used to solve the multidimensional
NV-wave resonant interaction equations.

1. Introduction

The inverse scattering problems for the hyperbolic and elliptic generalizations in
the plane of the m x m AKNS system have been successfully studied in [11] and
applied to the Linearization of several physically significant nonlinear evolution
equations (.V-wave interaction. Davey- Stewartson. etc.) in two spatial and one
temporal dimensions. We indicate here how the method used in our investigation
of the n-dimensional Schrodinger equation (2] can be applied to the study of the

nvreproblem for the operator in R

O X0  , d x, I

Here J, are constant real diagonal mn x m matrices (we denote the diagonal
entries of J, by J .. "' and assume P- J, - 0 whenever } ): the mautm-
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Uzuvesrv. ?otsdam. New York 13676,
9Permnanc address: Department of Matnemnaucs. Umversitv if Roctester. kochevter. New York
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valued off-diagonal potential Q = (Q') may depend on xO as well as x =

(x -..... x) and a = ( R - ILI is a complex parameter.
The operator (1) is associated with the nonlinear system

'3Q"1 I __ IQ dQ" I
- ' a 'a , - B ') 7 (a,,- a.,,) Q Q (2-

with

a, B <1 n. for some real B,, 1 < I < n. 1 1 < m. (3)

Even though no traditional scattenng operator exists in the c.ase of 1 0. the
so-called a method (see [21 and references given there) gives a satisfactory
definition of scattering data for L,, along with a systematic inversion procedure.
which we use to solve (2).

A sJution uf the inverse scattering problem for the hyperbolic case a, = 0 is
then obtained by a limiting argument, thus we can avoid a separate study of a
Riemann-Hilbert boundary-value problem (which in higher dimensions may also
involve some geometric complications). The main advantage of this approach is
that it yields (from the compatibility conditions associated with a in several
variables) equations which must be satisfied by the scattering data. In addition to
their importance for the problem of characterizing admissible scattering data.
these equations have several consequences: (i) they provide a formula for recon-
structing the potential from the scattering transform purely by quadratures [in the
generic case when no three of the vectors P = (Jl, J" ..... 1 < m. are
collinear]; (ii) they show how one can recover the scattering transform from (at
least small) data given on certain (n - 1)-dimensional surfaces (n - I. being the
number of variables in Q); (iii) they may indicate what other (possibly nonlocal)
evolution equations could be solvable with the [ST developed here: (iv) they
constitute in themselves a new class of multidimensional nonlinear systems of
integrodifferential equations which are linearizable.

2. The case ar * 0.

We will denote by k = (k ..... k) = k +ikf a point in C" and will often write
f(k) instead of f(kR, kL) for an arbitrary function of k, and k,.

As a first step in the a procedure we construct a family of solutions of Li, = 0
of the form 4 (.-.(x0 , x, k),exp(iZ7...k,(x, - ax 0 J,) ] with /i bounded; .i will then
satisfy the equation

a -, k[J~ = Q,]

The generalized eigenfunctions a, =(,u") we will work with are obtained by
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solving the integral equation , I, = I -GoQ~i,). i.e.

S,1 -JJ3v  G.i'(x 0 -yo,x -y,k)(Qtyo, y)i.&(yo, y. kl)dy0 dy. 1.5)

where the Green's function is ;iven by

G ' ( . ,x ,k ) . .-. f f, e d d. (6 )
(2.) - - , . , k,J' - )J1

For brevity we will assume here that Q is such that this integral equation has a
bounded solution u,, for all k G C ".

G, can be computed explicitly by contour integration:

G, (.xx.k) 2 x- x) e (7)

with

= j , , (, ax, k, - -7 (aki),) . (8)"

aG
The next step is to express 3,u in terms of u±. We start by writing - and hence

3Gp (Qi) as a superposition of exponentials:

3I-I

with

x r, ;'(x,x,)- (x,-.Jxo)X1 (10)

and

r,"( k , X) = '. .e ' ' ' " Q o )a (v , k))"dyv, y,... (11)

The calculation of dt is then based on the following crucial symmetry
property of our Green's function:

e ' ;" .... . ' (x, ,x,k) x, k .'(k ,)) whenever .J'X, = 0:

." (12 )'

.1;1

1-

....... -.-.,. ........... ,...............
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here k,'(k. X) is the point in C4 whose lth component is

(k(k.X)), k, k+ (13)

Once (12) has been establshed, it can be shown [assuming that (5) admits no
homogeneous solutions] that

a - "',-- '(xo, ,,k) = 7" '; I 8( '.J,'x,)T,"(k. ,)e'1 ;''( ... .kX
ak , 2i1ait(2,-r)" A/ '

× ,A,(Xo, x.,k,( k.X)) E, dX; (14)

(we have denoted by E, the m X m matrix with entries E,' = 6,3). If we now

fix all k,, I * p. and apply the (1-dimensional) inhomogeneous Cauchy integral
formula

I f a1 z(: z'.+1.,(- A ,) (15)

to the variable kP, we can convert (14,) to an integral equation: noting that
4(xo,x, k) - I when kPj -- x (and denocing k'= (kl,.... k',.... k)1, we have

g, x. xk) =I - T 15 (P T,' 'ia /i( 2 ,) "  p, .J J-

x e a;  ' .. X Ax)/( x, ":k', X )E, d X dk dk;,. '

(16P)

[More generally, one can use (15) with f(z) -ju.(x o, x, k + :v), e C, with k :
fixed and with an arbitrary v E C which is not perpendicular to any of the
vectors P - P, i* j.1 The matrix-valued function T,(k. ,) defined in (11) is our
scattering data. and (16) is the inverse-scattering recipe for reconstructing A from
T. Once is found, the potential is easily recovered:

Q (xo,x) --, dk dk (1-)

On the other hand, given an arbitrary T(k, X), to apply the above inversion
procedure we would first need to know that the equations (14,). p 1.2. n

S . - . -.................. . ... .... .
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are compatible; requiring that OZAk, 3(= , 3k. yields the following
characterization equations for T:

aTI 3TWj

, [ro + L(- J;; -- J,, -i" k-'
z kr J, 3k-/,, , :. i)[ 3T,': 1 3T 'j

1'=N'J[T'] ~ ~ JP "2.(2) ,[(;- )J; ill) - (J;- J/) J"- Jp"].."

IT. I) I)P=Nalt Ta] -

xf8(u,'x;)Tr''(k. 'v) ((k. X'), x - --x') dX'. (IS;',)

For compatibility, (18'J) need only hold whenever J/X 0: however, one may
also verify that T when given by (11) satisfies (18) everywhere.

It turns out to be very useful to recast (18) in integral form. It is enough to
keep only the equations (18,,). We then look for a parametrzation of the
hyperplane ((k, X) E- C ' X R : •j,X= 0} by new variables (x, ww)GC X R
x R4, so that, in the new coordinates, .lI = 3/3,,, 2 < p n. and
g;:(x o, x, k, X) = xqw, + x-w; these requirements determine (up to a translation
of x) the following (invertible) map:

k,= (J - )x1 x 1 2.

I-L!

,k =(a l) : I w 1, I > 2,

J/ C,=( x,) - V (9

To use (15) as before. we need the limit of T' for x, large (and xI 1 *p., w), w
fixed); this turns out to depend on whether for some r * i, j we have

( - J)())( - J J; -J") (20)

For brevity we consider only two cases [the only ones arising in the study of
(2)-see the appendix]:

Case I. Equation (0) does not hold for any distinct i, j, r and any p = 1.
Case II. Equation (20) holds for all i. j, r, p (in other words, the vectors

J...... J" all hie on the same ine in R).

-- ' .. .. "- -- . .. ".''. ; v ,, . , : '.....- '...-,: -. .-... ,.. .'..-... .-.-........ .-.. .-........ ......-..... ......-.
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In the generic case I we have

Lim To (x.W.,/) =Q"'(w'.w). 121)

and (18',") becomes

I, [oT](x.Wo,W) - T O',(xW.)-yfNj T, d'x',dx,i x,-x

= Q'J(w.w), (221)

where

"(e,0, w) =Q'(o x) dx,,dx and X=. ...

If (20) holds for some r * j, then (21) need not be true [see ). (8). (11)]. In case
II we have dT'/ldR, m 0 for all p, 2 < p < n; this, together with Liouville's
theorem, allows us to replace (22,) by

T."(x', W) = T""( ,o, ,,). (2211)

In case I we conjecture (as in [21) that the main condition needed to char-
acterize the scattering data is that I,'[T.](X, we,, w) are independent of x and p
and have suitable decay properties in (we,, w); furthermore, given a T, which
passes this admissibility test, we can (re)construct a local potential Q simply as
the inverse Fourier transform of I[T].

From (221) we see that T"' is completely determined by its values on the
(n + 1)-dimensional surface x =, .; the analogue of this in case I is the following:
given T(xo, Weo , w) - G'(w,, w), 1 i. j . m. we have [from (22)]

,2(X,wo,w) G'-'(w,,,w)

ff .v,'[ro]( w,.,, W v;1' T, w,
;'"L 'xp- x' X0,- XP, xd;

(23)

which (at least for small G) could be solved to find T everywhere.

N)

. . -,,
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3. The case o -L"

If we formally substitute a - 1 in (6). we find that, away from the hyperplanes
1,- (k SC":-.." t,(J - J/)kf, - 0), the eigenfunction 4 -,(x,. x, k) is well de-
fined and holomorphic. Thus it appears that the inverse problem for the hyper-
bolic system L -, could be regarded as a Riemann-Hilbert problem with data on
the hyperplanes Z,,. 1 r i < j < m. We prefer to obtain an inversion procedure
from our results for a, * 0. There seems to be little advantage in studying the
limit of /o(x 0 , x, k) as a -, -I (it leads us back to an analysis of singularities on
the hyperplanes Zi,); we work instead with the limit of A,(x o, x, kR, alkt), with
k, now playing the role of a parameter. From (6) we find

Lira Go(xo, x, kR, Likf) GI G(Xo, x, k., kj)

- .)6°-,!J, -. ,(ka, - kf,)(J,'-- J)1,)

+ 8( -7.[J,,, +(ka - k,,)(J,- /)]) e l (24)
+ 0_ J, - k R,° °'ill -d il(20

with 0(.) the Heaviside function: correspondingly,

Sx, kR~~k) = L(xx,kk),

where A solves the integral equation AL f ( Gt(QLt.). From (24) we see that
L j(xo, x. k R, k) is a solution of

dx0 ' xt- i k J

for every value of the parameter k, in R'. Our scattering data are now

TL'(kRlkf'X) ]J e- ' ' k,°' k) )(Q(x 0 , x)CL(x,01x, kRk )) dxdx

(26)

with

g3'.(x 0 , x, kR, k , X)

r-7

.... I.

-, -. '. . -.. ...-% -'.. ." '. -.,".. -,".. % -. -" '. .- " .-"%"%. '.,' ""%"-"%-, .- :.- .,2 .. :2. 2.,., - ,'-2i~ " :' '."
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Taking limits in (14). we find the reconstruction equation for u:

/if(X0~, , , kI j", !. (:-:J j"

0(l, krj 0(k,- ] I;
• ,. LkR,-k, -O, kR -iO j\

X TL" J( k R, k 1 , A)e'ad ,..  ''  ';.

X.L(xo,x, ,k(k,k;.,\))E:,ddk ,dk;. (27)

where now

( (kRkj,, )) R, kR, +- - - -,-, and ( 1_' , = kl,.

To write the characterization equations for TL we introduce new variables
[suggested by the limit of (19)] (X ,, X t, w, w) - R - to parametrize the hyper-
plane J/X, =.0 in R as follows:

k,,. = ("-)x,,. / ,

k.,R = J/;- J/x , W0 No .f':
I =-2 i~ iJ J - .

ki, = J- ) ,, I > 2:

,,= IJV:,- S/)x,, -,-1.L-.,

(' j - j ,) J - 1/
- (xR,-X,) w,, > > 2.

T e= u- the a'smp)- --o , 1.2 )

.%., Then under the assumption of case [ in Section 2, the i'mt of the equations (22t

~~~~~~~~~...................... .......-, " , ,...... . ._",.",...-_.._,.__,'',.,,.,...-
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yields

.XR,- XR, io XR,-XR, iO

X Yd TL (X' wo, W) dx', dyX

with NP[TI given by a slight modification of (18). In case II we have

TZ'(XR,x,.w0,w) = T/'(wo,w). (2911)

As in Section 2, we can now use (291) to characterize admissible TL and
(re)construct Q, as well as recover TL from data given on - const. X const.

It should be pointed out that once the family of Green's functions GL has been
chosen, all the above results can be derived without recourse to our limiting
arguments [,7,AL can be expressed in terms of , L using the appropriate
symmetry property of GL, and the analytic behavior of UL for k, large-needed
to establish (27)-follows from (24); these analytic properties. together with the
compatibility requirements a24 / ak,, k , - a /a k,, k t., imply (29)1

4. Relation between TL and the scattering operator (a = - 1)

To fix notation we sketch an elementary definition of the scattering operator
associated with L._ t- When Q a 0, given f: R' -. R ". the solution of the Cauchy
problem L-u(x, x) = 0. u(O. x) =f(x) is u(.. x) '(x -rJ ...... ,+
xoJf), I_ i < m. which we write as ux, x) -,) x -x,.J). When Q is, say.

smooth and of compact support. given any treasonable) f: R" - R . there is a
unique u solution of L u = 0 with uixo, x)= f(x - x )J) for x.) << (", further-
more there is a unique g such that ut. x,, x) = v x - xIJ) when .) >> 0. We write

g = Sf. On the Fourier transform side S can be written as

The question we would like to address is how to recover T, (and hence Q) given
S(.', k.). To relate TL and S(j, k,) it turns out that we need to relate uL and the
eigenfunction A(x0 , x. kR) corresponding to the "'Volterra" Green's function

G ' , k-- -r))ex , ,- ., JJ k- , 1 x ,, X J,' . (31)"]..

We start with the identity

4L- (CL-d)(Q4± ) -0 (Q(-)). (32) 40'

'I
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write GJ - G'J as a superposition of exp(i63"), and use a suitable symmetry
property of G. The main result is the following linear equation for T. given S:

T.'(k,. k,,X) ==S"( k"I(kx, kj, X), k,)

1n

x S'"( (k,, k t , X), k")(k,, k,, X'))TL'J(kR, k,, X') dX',

(33)

where k,(kR, k,,,\) stands for the real part of k:j.

5. Applications to nonlinear equations

The equations (2) are the compatibility conditions (cf. [3]) for the Lax pair:

L,,=0 and L+ B,-=A (34)at aI

the matrices B,. 1 < I < n. are constant real diagonal. and A'"(t. x,3, x) =
(1/c)a,,Q'I(t. x,, x) with a, given by (3). The restrictions imposed by (3) on the
matrices J1, 1 - I < n, are discussed in the appendix. To find the time dependence
of the scattering data corresponding to (2), we set A =, exp[i..k,( x, - ax,.!, -

tB,)]; then ,A satisfies (4) as well as

-F B0. (35) a.

Applying the operator .d to both sides of the equation (14). we find (when
o 0)

'-1

k, = i [Bik,- Bik;,(k,,)l T,'(t, k.,). (36)at -- ' -
(-I

For the case a = -1 the equations [obtained as limits of (36) or by a parallel
derivation] are

_Vt t,.k,. k,,,\) , 3k8,, - Bk'(k.k,.,\)ji .T k. k,. ). (37)

Thus, when a = -1. we can apply the inverse scattering procedure together
with (37) to construct the solution to the Cauchy problem for (Z). Note that

-". .'-.":% ".'. -'."-'." " "."" . . ... '. .'. '2". '.- ". . : • • "" " ,".'- . f . . .. ..• -&'-b"a-
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TL(t, kR, kr. X) as given by (37) satisfies the characterization equations if
TL O, kR ,k, X) does.

When a * 0, the Cauchy problem for (2) is ill posed- however lby analogy to
the corresponding linear problem) we can use inverse scattering to solve (2) as
follows: given Q(O, x 0, x), it can be decomposed into Q - (0. x0 , x) -- Q (0. x0 , x),
where Q_ (0, x0 , x) extends to a function Q -(t. r., x) satisfying (2) in the half
space t> 0, while Q - (0, x, x) extends to a function satisfying (2) in the half
space t < 0. Assume for simplicity that ca,, > 0 for all I * j. Given Q. define
Q. by Q0,Owo, w) 9(-wo)Q(O, w, w). If T_ is the scattering transform of
Q _, then from the direct problem we find T'_. (0, X, wo, w) - 0 for w > 0: thus for
r > 0 we can define [see (36)] T_(t,X, wo, w) by

r'_'"(t ', o,, W= exp It (Bk,--B 7,')) }Tr(o.Y.w,) w)

[see (3). (13), (19)]

ex~ ,a,, w) + W) "

exp[1t --w (a,, T w.,)w)T.(0,X.o, ..

(38)

Since the expression in the exponential does not depend on X and since its real
part is nonpositive if t > 0. TJ(t., X. w,), w) satisfies the characterization equations
(29), so inverse scattering should yield the desired potential Q_(t. x'), x); simi-
larly. we construct Q_ . xt, xx). solution of (2) for < 0.

Appendix

We need to find the restrictions imposed on the choice of matrices , I I / < ,.
by the existence of (a,) and B,, I < ' n. satisfying (3).

If (3) holds, then the matr'x (a,) is symmetric and

J - J,
a,, -a, = (a,, - a) _, (Al)

for every I and every I. . ,?distinct. [Conversely, if (Al) holds with (a,,)
symmetric, then B, I 1 _ n. can be found so that (3) is satisfied.] Note that if
a, - a,,, (Al) forces '. J. P' to be coilinear. There are two cases:

I. a, , =a, tor all I. * P ,istinct. Then (Al) puts no restriction on J,; in
particular, they can be chosen so that ('0) does not hold :or any distinct :, _. r
and p - 1. The system i2) ts linear -n his case.

II. For some I,). Jo. P) distinct. a = a, -, We show that in this case the
vectors Ji ..... J" must all be collinear. From iAl) we already know that

-7,,
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..

J, Jo0, jPo are collinear. For any r o o , ne of the following must be true: ,

('t) a~, =a: ,  (d~) a, =ao, ,  (ii) a. =ao(A2)z

(for if not, a,,. = a,,° = a.1o = a,,o, contradicting our assumption). In any of the
possibilities (A2), J' will be on the line passing through J'°, JPa, J1o- this will be
true for any r, 1 < r < m. [Conversely, given J L, j" ..... J collinear with Jr' * J1,
we can construct (a,)) symmetric satisfying 1I and (A1).]

It follows that whenever (2) is not linear, the matrix having j., J..... J- as
rows has rank at most 2; if n >, 3. its columns [the diagonals of the matrices J, in
(1)] must be linearly dependent, and the inverse scattering problem for L. can
also be solved by reducing it to a lower-dimensional one. On the other hand. since
the characterization equations are trivial [i.e. Y(T) = 01 in this case, it seems
reasonable to expect that other (possibly nonlocal) nonlinear equations can be
found which would be compatible with (22c).
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The paper deals with the direct linearization, an approach used to generate particular solutions of
the partial differential equations that can be solved through the inverse scattering transform.
Linear integral equations are presented which enable one to find broad classes of solutions to
certai nonlinear evolution equations in I - I and 2 -1 I dimensions.

PACS numbers: 02.30.Jr
I. INTRODUCTION u, + u. -! 6uu, = O, u = u(x,t). (1)

The partial differential equations PDE'si associated It is based essentially on the existence of an integral equation
with the inverse scattering transform lIST) see, for instance, 6
Ref I for details are structurally rich. It is clear from the 6 x,t;k) - i - ----- , -,', dA () = 1, (2)
work done in this field that these equations admit many .L I+k
kinds of approaches and studies. Broadly speaking !see. for involving an arbitrary contour L and measure dA I) which
example, Ref. 2% it .s possible to group these approaches in linearizes Eq. 1). In fact, under the assumption that the ho-
two different zlasses: "'algebraic properties" and "methods mogeneous version of (2) has only the trivial solution, the
of solution.' solution & of (2) provides a solution u(x,t) of the KdV equa-

Among the algebraic properties one can associate with tion through the formula
each of these PDE's are the existence of an infinite hierarchy - "1.
of equations characterized by the same linear problem, the uIX,t) - < (X,t;I)e ' dA (1). 31
existence of infinitely many conserved quantities and of a
Hamiltonian isometimes bi-Hamiltoniani structure: the pos- The original motivation for this result is associated with
sibility of associating with these equations a so-called Back- the, by now classical, IST (corresponding to u--.O sufficient-
lund transformation BT'-i.e., a nonlinear transformation ly rapidly as ;xl- ) of the KdV equation. Specifically the
connecting different solutions, etc. integral equation 12), with contour and measure fixed and

The methods of solution developed so far depend of given in terms of the scattering data, is the integral form ula-
course on the specific problem that one has to solve: the IST tion of the matrix RH problem,
for instance is the appropriate tool to solve the initial value (~xzk' k1( x,t- - k4
problem associated with these PDE's. G x,t;k x,t; - k ".---

In order to generate particular solutions there exist oth-
er methods: e.g.. the BT the Hirota approach' the Dressing In (4) (b is the same as in 121, e0 is another eigenfunction with
method3 and the Riemann-Hilbert direct approach.' intro- appropriate analytic properties, and the matmx G is given in
duced by Zakharov and Shabat (ZS); etc. The Dressing meth- terms of the scattering data.
od has been formulated via an integral equation of the Another motivation is based on the Rosales perturba-
Gel'fand-Levitan-Marchenko iGLM) type. and the Rie- tion approach'; in fact the solution 3) can be interpreted as
mann-Hilbert RI-I) direct approach is based on a local ho- the sum of the perturbation series solution of the KdV equa-
mogeneous RH problem. used to generate solutions of the tion around the solution u = 0.
PDE. Later we will discuss in some detail the RH method. The arbitrariness of contour and measure in 21 allows
used often as a reference point of our analysis. one to capture a wider class of solutions than the one given

In this paper we will concentrate on a particular meth- by the GLM equation: as an example in Ref. 5 it was shown
od of solution: the direct lineanzation iD LI, an approach for Instance that using i2) it is possible to find a three param-
used to generate particular solutions of the PDE's that can eter family of solutions of the self-similar reduction of 11):
be solved through the IST. We will ia) discuss earlier work '- 6uu' - 2u -. ru') = 0. u = uix. r5)
and will give a natural generalization, which captures a sig- The GLM equaion is able to provide just one parameter
nificantly larger class of solutions; bi stress the conn-c-:ons
between this method and 'some of the main features of the Aohrs~etv ruet; soitdwt h nAnother suggestive argument is associated with the hin- ... '
IST and ici compare this lineanzation with the RH direct ear limit of31; in this case, Eq. 3) becomes. _
approach introduced by ZS, showing their connections and

differences. u,.,,- a, ( e-"- "di k. 6.
It. THE DIRECT LINEARIZATION -L

The DL was introduced by Fokas and Ablowitz - in con- Equation 6i is ;e general ;oiution "Ehrenpreis prnciple"• of the linearized KdV equation
nection with the Korreweg-de Vries KdV) equation of ti

Permanent addrems: Dipartimento di Fisica. Universita di Roma t3 U, 0.
Roma. Italy The linear limit of i3) provides the most general solution ot
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Eq. i7l', whereas it is known that the linear limit of the GLM between these two equations tinaily implies that u solves the
provides just those solutions of 1 obtainable using the Four- KdV equation, 1 J
ier transform. The lineanzation given here obviously contains the spe-

These considerations are very far from implying that cial cases n which u, = 0 and u - 2/x- which are ex-
this DL provides the most general solution of t 1); on the plicit solutions of Eq. ;I ; in these cases the DL was previous-
contrary recent studies on the equation of Painleve II 1PIll, ly given

U, - - 2v3 = a, In the Appendix we give a constructive procedure that.
starting with the general assumption (9, enables one to char-

* which is intimately connected to Eq. (5) see Ref. 71, have acterize the kernel h in terms of tA as in i I I and, at the same
shown' that it is not the case, since the solutions of .5) ob- time, to fix the integral representation of u - u, in terms of '

* tamed through 12) correspond just to the limited interval and ,, as in 1121. Such a systematic procedure, whose main
0, 1) of the parameter a in 81. steps are essentially the same for all the PDE's solvable via

In other words, the perturbation solution 13) (in the Ro- the IST. will be the basis of the results of this paper.
sales languagei of the KdV equation around u = 0 corre- We remark that we could have given the DL of the KdV
sponds only to the solution of PI1 in the interval 0 <a <. It equation for the function 3 ix,:k =x,:;k )/A1x,t;k 1, in-
is natural to consider an extension of the DL formulated stead of V'x,t;k . In this case the corresponding integral
above which would ccrrespond to the perturbation solution equation
of the KdV equation around any arbitrary solution u, of the
KdV itself. 6b x,r;k ,b lx,:;li gx,.:k,!dA (1) 1, (1Sal

III. A GENERALIZATION OF THE DL gix,:;k,1 ) ''xj;! I lxk,1//'ox,:;k) 15b)

The essence of this more general linearization is given has I as forcing term and apparently would be the more
by the following proposition. appropriate formulation for investigating analyticity prop-

Propositon 2: Let "x,z;k I be a solution of erties in k, in view of the solution of the IST. As far as the DL

Iis concerned, the two formulations are completely equiva-
x .- j &Axt;! l x,:;k,1 LdA LI) = Lix,:;k I, ,1 lent and here and in the following we will use either one orthe other, according to the convenience and to the elegance

where L and dA I/1 are arbitrary contour and measure: of the associated formulas.
* '1x,:;k ) and i x.:;k are two arbitrary solutions of the The explicit formula (I I for the kernel h of Eq. i9)
coupled systems shows the singular character of the integral equation and

Wo- un - k /1411) = 0, )10a) strongly suggests that, as in the case u = 0, some type ofRH
,. u,. i, - k -u,, 0,; lb) problem is going to be the natural structure underlying the

IST of the KdV equation for solutions u, as a finite perturba-
,) = ui.t ) is any given solution of the KdV equation i I); tion of a given solution u.
and h 'x.i:k.' is defined in terms of " by As we wrote above, the essence of this method is related

Z (.I.. , - ; I [ 1i to the existence ofa linear integral equation like 9) [ori 1Sai]
which provides solutions of the KdV equation. On the otherhand. we know that the KdV equation is one of the many

Assuming that the homogeneous version of 19) has only the PDE's that can be solved through the IST. Hence it is natu-
zero solution, then ral to ask ourselves if and how the DL, in the generalized

form introduced here, applies to other equations.
= uoxz )- 3, vxz:;k hi(x.:;k da :k (121 For this purpose, let us consider the n X n matrix equa-

J tion

solves the KdV equation.
The proof is direct and it is obtained operatingonEq. 9) ', =-,I.'--Qq., ot= n x,:;k , 161

with the operators P and M defined by where the scalar constant z plays the role of spectral param-
eter.Jis a constant diagonal matrix, and Q = Q Ix,i) is an off-

P - /. .= --. u. - k - 131 diagonal matrix. Equation 116) is the natural n X n general-

The result of this operation gives ization of the generalized ZS problem 'see Refs. 10 and 111
and its IST has been recently ngorously studied by Beals and

* ,I).A' - -. [l .:;i Ah 0x.::k.. dA 1=0, l4ai Coifman.'
In order to give the DL associated with ( I6i it is conven-

.itx.::k , - .-M' 'kI~x,:; h ,x.:;k dA /! ient to introudce the matrix function <P x,:,k I defined by
-L (P x,:,;k P= I.'xa;k , P')"- aki

I *tPU'.: ii'j!.t::k ' ~. :tx.t:: IdA /1, ,14bi where V' and C)" solve Eq. i161 corresponding to the two
- c potentials Q and Q.

and now if we assume that the homogeneous version of Eq. The linearization of the class of evolution equations as-
191 has only the zero solution. Eq. n14ai impiies that P/, = 0 sociated with the spectral problem 1161 is then given by the
and then Eq. i 14b implies that .14 = 0. The compatibility following.

2815 j. M4ati. OMys., Vo. 25, ',o. 9. Seotemroer 1984 Sartini. Ablowitz. and Fokas 2615



Poposition Let P x,:; be a solution of and the RH direct method is immediate and obtains by com-
paring i 13) and 191 with the - projection of 24):@,: - ,.:!G'x.t:,iil = I ,13) R " ' = -

.-L ' x.:;Z) - P -Px,:;,' d . 23
when L and dRi / are arbitrary contour and measure. I s the - -

identity matrix. G :s defined by where z-L from outside the contour.
e- ' - L equivalence of the two approaches shows that t.e

Gx.:Jiz - 1x,,% Th
X Gojl -iP' 'x.:;!,, 191 homogeneous RH problem 241 on which the ZS method 1-

based, is the natural analytic structure underlying the li-ar-
where Gj;Z 'is an arbitrary constant matrix function, and the ization of the PDE's associated with the spectral pr .,n
P.- are two arbitrary solutions uf Eq. (16i for Q,,xt I. As- 161. The particular z-dependence of the kernei Gof Eq., 13,
suming that the homogeneous version of, 18) has only the given in 19), indicates that the integral equation , 18) comes
trvl solution, then ' x.r I defined by from the i - j projection of a homogeneous RH problem of

'k x,r-.z = P x,t 'zl q x: 20) the type 24). Vice versa. if the z-dependence of G appeared :n

soves Eq. 116i f a different way, we would infer that 1241 is not an adequate
analytic structure for describig the problem. We will show

Q x,t) Qox,:) -J,t'P!x~t;l)l",'x,:!) in the following that this phenomenon is not exceptional.
L. being a common feature of the PDE's related to the IST in

X) 2 - 1 dimensions.
) While the RH approach idue to its restrctive basis; can-

In this proposition and in the following ones we often intro- not in general be applied, the DL. based on a linear integrai
duce arbitrary functions assuming that they satisfy suitable equation of the type f 13), where the :-dependence of the ker-
regulanty properties in order to give sense to the integral nel G is determined aposteriort. case by case [through direc,
formulas in which they appear. algebraic calculations and is in general different from the one

Again the proof is direct and is obtained by applying the given in 119)], turns out to be a viable approach for character-
operator 12, izing a wide class of solutions of the PDE under investiga-

l-2F;(xj : -F, - :[ J.F I - QF - FQo, !22) tion.

on Eq. ,18) to get IV. THE DL IN 2 - 1 DIMENSIONS

'f2P (..: '1(2P ix,z;I' G 'x,i.lz Id I 2 ; 23) The DL in 2 - 1 dimensions is again based on a linear
L integral equation

the result follows from the uniqueness assumption. In the -

Appendix we give a sketch of how to constructively obtain 'P 'xy,t;k; - ,J P (xy,rZ,. LV0
the linearization contained in Proposition 2, since the proce- it
dure does not differ in spirit from the one used for obtaining X G x.y,:;k,/,vdg . vi Z. 29)
Proposition 1.

Problem 1'16) allows us to easily discuss the connections Now the integration is in two variables/ and v, a reflection of
between the DL and the RH direct approach, indeed it will the higher dimensionality of the configuratnonal space. L
turn out that, if used on Eq., 16i, then the two approaches are and ds" l, vi are arbitrary contour and measure, ;3 = B, . vis
equivalent, an arbitrary function of / and v, and the kernel G will be

The R-I direct approach introduced by ZS is based on characterized in terms of certain linear PDE's whose coeffi-

the solution of the following matrix homogeneous RH prob- cients are given in terms of the unperturbed solution
* em: u~~~

As an example, let us apply the DL to the Kadomtsev-'P -;x~t ; = 'P -x ,:i(I - R x ,:.], 24) Petviashvili K P equation:'

where z lies on an arbitrary contour L in the complex-z
plane. P - ziand'P -zaretheboundaryvaluesonLoffunc- )u, - 6uu- = - cot, o C
tions analytic inside and outside, respectively, ofL.'P - zb-- that can be obtained as a compatibility condition of the s. s-
as zi-xi, and R is defined by tern

R X,.:.- # ,t_,OG ,l - 'x,::z), 1251 Ptb=ow --0, - Za6= 0, ial

where G,,zi is an arbitrary constant matrix and '/) solves Eq. V di. -
161 with the potentia Q. Then it is easy to verify [using24;, M=='. -4 w -6uib, -S1u, -. ; u, x'dx =} =

.251, and '16;] that 'k6 1x.:,- and Qtx,: , defined by lbi

'P ' X,taz; = ' X.:.';X1,t. 261 In our analysis o- can be thought of as an arbitrary, comoiex
parameter, including then thetwo cases o" = i and - I KPI

:J - Qxx! = - =(:J- Qx. ir =and KPII) in which Eq. 301 describes the propagation of
27, I quasi-one-dimensional waves in a nonlinear weakly disper-

solve Eq. 16. sive medium and the sizn of c' coincides with the sign of the
The equivalcnce between the DL given in Proposition 2 dispersion.
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We have the following proposition. g, .4- 4i(k 1- i "g = 2[(k 2 -- k3 ( ,,
Proposition 3: Let &Mx.y,r,k) be a solution of - ik + 26)v, - v,... 139c)

,b(x,y,t;k) + f, f (xY'1l3 (1,vO) The compatibility condition for the system f39) fixes the k

×h (x,y,t;k,/,v d4(l,v) = ot/X,y,;k , (32) dependence of g in the form

where tbo solves the coupled system (31) corresponding to a gjx,y,t;k,1,v) = - ivfx,y,t;1,v(/[2(k - cil,vif], (401
given solution u(x,y,) of Eq. (30) and h is given by the for- where c = c(I,v) is an arbitrary function of l and v and, corre-
mula spondingly, u solves the equations
h (x,y,t;k,1,v) vx i¢fi - cev, (41 a)

.4f(x',y,t;1,v)Vo(x',y,t;k (dx' o , = (51 _ C)v, (41b)

+ = 4i( 6 - I c). (41c)
wherewis a soltion (3 thecouThe k-dependence ofg (and then ofh ) implies that the

? where aJ is a solution of the coupled systel integral equation (32) can be derived from a R.H problem of

. , = i[f.(alWo(a) -f(ajoo.(a], (34al the type introduced by Manakov"6 in a work in which he has
w - generalized and adapted the RH direct approach ofRef. 4 to

cot - 2 [f..(aWo(a( -f (ct) )a) .+.f(a)io_(a)] 2 + I dimensions. He postulates a nonlocal RH problem,
- 3uof(a)b0 (a), (34b)

with 0 -(xy,t;k) = b -(x,y,t;k)

f(a).f(a,yt;,v, tb0(a) = x(a.y,t;k), + - (x,y,t;l )G (x,y,t;k,1 )dl, (42)

andfsolves.
in order to detect and generate PDE's solvable via the IST.o0f -f. - u'= 0, (35) The existence of explicit cases, associated with uo = 0 (and

( J.. or ) ~ (36 briefly discussed above), in which a RH structure is recov-
f, + 4f1w + 15uj + 3(uo. + uo, dx' = 0. (36) ered, is a confirmation of the validity of Manakov's ap-

Assuming that the homogeneous version of(32) has only the proach (for uo = 0) in finding a connection between the KP
trivial solution, then u(xy,t), defined through equation and the nonlocal RH problem (42). Such a connec-

tion was also proven via the solution of the 1ST (see Refs. 14,

u(x,y,t) = uo(X,y,t) + .O Xy'1 (l,)) 15, and 17). In Ref. 15 in particular, for the first time it was
shown that the KPII equation is related to a "d" problem,

Xf(x,y,r-,1,v4 (il), (37) whose integral representation also gives rise to the k-depen-

dence presented in (40). But the nongenericity of the above-sasolutin o the o ieadti bmentioned examples corresponding to the case u,) = 0 indi-
tion of the operators P and d on Eq. 3s2). In the Appendix cates at the same time that the RH problem (42) is not
tio o the oerator ctive an oedure Eq. se3 tet ppeni adequate to capture a wide class of solutions of the KP equa-
we show how the constructive procedure used to get Propo- tin
sitions I and 2 generalizes naturally to this i2 -- )-dimen- tIon.
sional example, hence enriching itself of new features and We wil/show in the following that essentially the same
properties. situation arises when one writes the DL of a class of PDE's

The solutions of the IST for KPI and K.PII (see Refs. 14 associated with the 2 -- I dimensional generalization of the

and 15) can be easily recovered by choosing u, = 0 andfi = I spectral problem (16). Such a generalization is's

fororo"= - I. i,, and, u Q=0, (43)
The formulas (33) and (34) or, equivalently, the system where P = (P x,yt;k ),Q = Q x.y,t) andlaren X n matrices,

oflinear PDE's (AlO) satisfied by h, have a rather complicat- and.. is constant and diagonal whileQisoffdiagonal. Physi-
ed k-dependence. However, when Uo = 0, the situation sime- cally relevant equations such as the so-called Davey-
plifies enormously; in order to see that, let us introduce the Stewartson equation, the n-wave interaction in 2 + 1 dimen-
functions g and u defined as sions, and the modified K.P equation are related to (43). The

gjx,y,t;k,l,v)=h (xy,t;k,lY IST associated with this linear problem has been recently

x lhoix,y,t'g(l,v)/(x,y,t;k ), {38a investigated and solved in Refs. 19-21.
The DL corresponding to (43) is formulated in the fol-lowing way.

" Rewriting the system (A 10) (including also the t-equation) Proposition 4: Let a (x.y,k ) be a solution of
for the function g, and considering the case u, = 0 (and
0i0x,y,t;k, = expikx + (k 2 /jlj -- 4ik 't ]), one obtains the 0 (xy,;k)+ ({x-Yd (I, "

overdetermined system

g. + i(k -,6 0g = jv, (39a) X G (x.y;k,lv~d; (l,v) = 1, (44)

17g, . (k 2 - $ 2)g = - ilk + )v ], i39b) where L and d (!,v) are arbitrary contour and measure,
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=(,v) is an arbitrary functon of! and v, G is given by the APPENOIX
expression In this Appendix we will illustrate the constructive pro-

G {xy;k,l,v) cedure used in this paper m order to obtain the DL contained
in Propositions 1-4. Since the main steps of this procedure

,I" = Y [f j- Vx,),)) are essentially the same for all of the PDE's related to the
-IaIST, we will discuss them in some detail for the KdV exam-,.

XRA (x',Y;Lv).P 0 x',yk dxpie, limiting our discussion of the other cases to those situa-
tions in which the procedure introduced needs to be modi-

--).k" \a' fied or exhibits new features.
-"y,k,,-,a)) P.'(x,,k ), (45) (1) The first step consists in writing the integral equa-

where tion for b,

g,(y,kj,v,a) = V- '(acy-$ (1,v)R (a,y;l,v)P(ay;k1, O(x;k) + f x;l)h (x;k,ldA I1) = &P,)(x;k), iAla)
(46)

R = R Ix,y;I,v) solves or for 0 = 01,"

-R. + RYJ + (JS(xy;6 (l,v)lR I + [Qo(x,y)R ] 0, (47) 0 (x;k) + (x;)g(x;k,1)d ) (1. (Aib)
with

The kernel h has to be characterized a posteriori as is indicat-
S PO ,, 'Y6), (48) ed in the following steps.

and V. is a solution of (43) corresponding to the potential (2) In the second step one applies the spectral operator P
Qo(xy). Then to(Al) (or!2 to(A2)]. In the KdVcaseP = 3, -- uix) ICk

Pl(.xj,k) = '(x,yk) x,y;k) (49) 4 and Eq. (A l a) implies

solves Eq. (43) if Q (x, y) is given by , ( ).ft [ (x;! (h (x;k,1) + 2 (x;1 (h (x;k,"

Q (x, y) = Qo(x, y) + [ f {0 x, y .(, 4)) + Ix;l )h ,(x;k,l ) dx () = 2 .b(x;k ), (A2a -)

xR (x, y,1,v)d4 (1,Y) (50)

I U~~~~z(xCt6(X;k) + xO;1d()
Again we refer to the Appendix for the derivation ofI

this proposition. Formulas (45) and (46) imply that the kernel = uo(x)bo,(x;k) + [u(x) - u,(x)]/o,(x;k ), (A2b)
G satisfies the following set of (compatible) linear PDE's:

G, +GS(k)Q- W =)0-R, 1oGa) -,x;k) + -(Lx;) h (x;k,l)
4 JL 4

* GGJS~(~Q0 iJSfiY Q0 )G J. ~b)+ OC lfx;i (A (x;k,l) )dA (I) = LO,(x;k) (.A-1c)4

When Qo = 0 (and 0 = exp(ik ( Jx - y))), the compatibility Adding these three equations up, one obtains
condition for the system 15 1) fixes the k-dependence of G in
the form t

(PV)(x;k) + [(P0!(x;l )h (x;k,l)dAt (1)
G(x, yfk,.vl = - iR (x.y-,,v)/fk - c0,v(J, (52) PJ -(

and, correspondly, R is defined through the equations + 2ik*(x;1)h (x;k,) + O(x;I)

R, = ilJR - cR J), (53a) X( ."ki' + Z L)X h,,,(x~k~ 4 + x;k..)}d2 (l)

R,= if6 - cR {53b) -

postulated by Manakov in its nonlocal RH approach. This - (P°¢Y)(x;k) + (u - UoIt"(x;k). (A3)
shows again how the nonlocal RH problem (42) is an appro- Then the requirement PV, = 0 1POb, is already zero by hy-
priate tool to detect the PDE's in 2 - I dimensions corre- pothesis) isolates an equation for u - u, which, in the KdV
sponding to the linear problem 43), but, unlike the case of its case, reads
associated I - I analog, it is able to capture a restricted class
of solutions only (e.g., the ones obtained perturbing offof the (u - uo)it(P"k) == 2 Ut (I)f (kJ WA
zero solution.

Concluding this paper, we would like to remark that the 4fIzl)(h - k-2- l dA iA4)
DL has been studied here in connection with a certain selec- 4
tion of relevant eigenvalue problems associated with the IST here and below we omit for convenience the x dependence.
theory, showing that the general assumptions on which the (3) The analysis of Eq. (A4) suggests the structure of the
DL is based are consistent with the general features of the integral representation of u - uo, in our case Eq. ;A4) im-
IST theory. plies that u - u, must have the form
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U u1, +I(A8) for the spectral problem (43). Equation (AS) implies for

-U- (k. jl/y'(/) -.- k1 V (/] d2. (A5) KP the following system:

where the functionsf, andf' are characterized in the next 2h, =fil b(),k ,AlOa)
ste p. (7hy + - h=-fP0l )o(k ), (Alfb)

.4) Evaluate the consequences of the assumed structure " "i,' (AS). For instance in this specific case, Eqs. !A4) and IAS) whose compatibility condition implies thatfi', =f: =f , ";
impl and formula (34). Equation AS) for the linear problem f43)impl implies the system 511, whose compatibility condition is giv-

2h, =f,(b64]'(k), (A6a) en by Eq. (47).

h, + [(k - 2)/4]h =f.i!pt/o")k), {A6b)

and one can verify that the compatibility condition for this
system implies thatf, =f. = d , where z4o is an arbitrary 'M. J. Ablowtz and H. Segur. "Solitons and the Inverse Scattering Trans-
solution of the Schr6dinger equation i 10), and also that h is form." in SIAM Studies n Applied .athemarncs, No. 4 JSIAM, Philadei-
given by formula (11)I. phia. 1981).giv en aformlaed (1 o r eA. S. Fokas and M. J. Ablowuz. "Lectures on the Inverse Scattering

When applied to other examples, the procedure above Transform for Multdimensaonaj (2 - II Problems." INS No. 28. Decem-
repeats exactly for the first two steps, while steps 3 and 4 ber 198., Lecture oes in Physics, edited by K. B. Wolf. No. 189 (Spra'7-
adjust to the specific problem under investigation. If, for Wf. Berlin. 19831.
instance, we deal with Eq. (16), after steps I and 2 we have 'v E. Zakharov and P B. Shabat. Funct. Anal. Appl. 13. 166 1979).

'A. S. Fokas and M. J. Ablowitz. Phys. Rev. Lett. 47, 1096 119811.

Qo= (z-t)JOG±- [ - G, + 4-(I'- QOG 'R. Rosales Stud. App. Math. 59, 11711978).
IA. S. Fokas and M. 1. Ablowit. J. Math. Phys. 23. 2033 11982).

- G )zJ + Qo)] dA (1), 1 A7) 'A. S. Fokas and M. 3. Ablowitz. "On the initial Value Problem of the
Second Pasnleve Transccndent.'" Commun. Math. Phys. 91. 381 1982,

and now taking into account that Q - Qo is a k-independent 4A. S. Fokas and M. J. Ablowntz. in AlP Con/epynce Proceeding. .Vo. 98.
off-diagonal matrix, on analogy of (AS) we necessarily find edited by M. Tabor and Y. M. Treve ,AIP. New York. 1982). pp. 237
the structure ' V. Zakharov and P. B. Shabat, Sov. Phys. JETP 34. 62 19721.

"M. J. Ablow tz D. I. Kaup. A. C. Newell. and H. Segur. Stud. AppL
Q O [ ( ] (Math. 53.249(19741;M.. Ablowctz and R. Haberman. J.Math. Phys. 16.

Q- Q= , lAS 2301 1975).
"R. Beals and R. R. Codman. 'Scattering and Inverse Scattenng for First

whereagainR has to be characterized. Substituting (AS) into Order Systems." Cormmun. Pure Appl. Math. to be publishedl.
(A7) we then obtain '3B. B. Kadomtsev and V. 1. Petviashvili. Soy. Phys. Dokl. IS. 539,1970t.

'A. S. Fokas and M. 1. Ablowitz. Phys. Lett.A 94. 67 i 1993).
:- I)G (z,l)= R (), (A9a) :"M. J. Ablowim. D. Bar Yaacov,. and A. S. Foks. "On the IST !'or K.I.'

G -t- G z + Qo) - 11J -- QojG= R (I W. (A9b) INS No. 21, Nov. 1982, Stud. Appl. Math. 69. 135, 19831.
S". V. Manakov ,pnvate commurjcationl; mnd lecture by P Kulish at the

System (A9) has the solution "Solitons '82" Conference and Worxtshop. Edinburgh. Scotland. August
1982.

G kI) R I}/(z- I , R()l rj')=Go(I) =L -I)!) "S. V. Manakov, Physica D 3. 420 119811.
The application of our procedure to equations in 2 - Idi- "M. 1. Ablowtz. R. Haberman. Phys. Rev Lert. 35. 1185 1197,51.

'9A. S. Foka. Phys. Rev. Lett. 51, 3 i i9131.
mensions leaves essentially unchanged the first three steps, :*A. S. Fokas and M . Abiowitz. Phys. Rev. Lett. 51. 7 1983.
and leads to the integral representations (AS) for KP and 'A. S. Fokas and M. J. Ablowctz. 1. Math. Phys. 25. 2494 ,19841.
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On the limit from the intermediate long wave equation
to the Benjamin-Ono equation
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Department of .Wathematics and Computer Science Clarkson College of Technology, Potsdam. ,Vew York.

13676

(Received 26 April 1983; accepted for publication 29 June 1983)

The intermediate long wave equation is a physically important singular integrodifferential
equation containing a parameter, referred to here as 3. For 6 - oo it reduces to the Benjamin-
Ono equation. It has been recently shown that the inverse scattering transform schemes of the
above equations have certain significant differences. Here it is shown that for 3 - =, the inverse
scattering transform scheme of the intermediate long wave equation reduces to that of the
Benjamin-Ono equation.

PACS numbers: 03.40.K.f

I. INTRODUCTION have significant differences. Actually the IST scheme of the

The intermediate long wave (ILW) equation arises in ILW equation is conceptually similar to that of the KdV
the context of long internal gravity waves in a stratified fluid equation (see subsec. IIA below ; on the other hand, the IST
with finite depth. ". Moreover, it arises in other circum- scheme of the BO equation is similar to that of the Kadomt-
stances as well (e.g., long waves in a stratified shear flow."' sev-Petviashvili equation ia two-dimensional analog of the
The ILW equation can be taken in the dimensionless form KdV equation).20 Hence the limit process 5 - = in a sense

u, - (l/6)u, + 2uu, + Tu. = 0; provides a limit between two different types of IST forma-
lisms, appropriate for one and two dimensional problems.

(TVI(x)* icothi vi4 d (1) respectively.
26 = 2 In this paper, it is established that as 6-- m, the IST

S., where Cauchy principal-value integrals are assumed if need- scheme of the ILW equation reduces to that of the BO equa-
ed. In the internal gravity waves problem, the parameter 3 tion.
can be thought as the ratio of depth to wavelength; Eq. (1)
reduces to the Korteweg-deVries (KdV) equation' as 3 - 0 II. REVIEW OF THE IST FOR THE ILW AND BO
shallow-water limit( EQUATIONS

-2uux -" (6/3(u = 0, (2) A. The ILW equation

and to the Benjamin-Ono (BO) equation' as 6- o (deep- The following results can be found in Ref. 18.
water limit)

". i. -- 2uu, Hu =0; ((x)--. ± ) .. The direct scattenng problem
- f 5 X -- The direct scattering problem of the ILW equation is

(3) based on the x-part (4a) of the "Lax pair"
• Equations (I H3) are specialcases ofan equation dis- L 5 W+iW , (.A) + 1/26](W " - W-= -uW"

cussed by Whitham. "o N-soliton solutions, an infinite nrm- (4a)
ber of conserved quantities, Bcklund transformations, and

Lax pairs for the ILW and BO equations have been estab- i W,: - 2i '. W + W,

lished in Refs. 3, 4, 6, 11, and in 12-16, respectively. + iu, - Tu, + p, W 0. (4b)
The inverse scattering transform (IST scheme, a meth-

od for solving suitable initial-value problems for certain non- where
linear equations, was discovered in connection with the KdV
equation." The IST schemes for the ILW and BO equations Ae =  

-

havebeen recently established in Rels. 11, 18, and 19, respec- e 6 - e_ 6

tively. The limit of the IST scheme of the ILW equation to p . ( /21: + v, v

that of the KdV equation (6 - 0) is rather straightforward

and was given in Refs. 6 and IS. However, the limit of the is an arbitrary constant, A is a constant and is interpreted as a

IST scheme of the ILW equation to that of the BO equation spectral parameter. Given u, Eq. (4a) defines a Riemann-

(6 - w) presents certain difficulties. This is a reflection of Hilbert problem in a strip of the complex x plane; W t (x)

the fact that the IST schemes of the ILW and BO equations represent the boundary values of functions (i.e., ,-"

(x) = lim) , o tkx ± iy)] analytic in the horizontal strips

Permanent addres: Istituto di Fisica. Univenita di Roma. 00183 Roma. between Im z = 0 and Im z 26, and periodically ex-
Italy. tended vertically. Importantly, Eq. (4a) can also be solved
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without appealing to Riemann-Hilbert theory since it can be are also i - and - functions in _iA . provided that there
viewed as a differential-difference equation. This follows exist no solutions to Eqs. o)i when 6 is finite. t can be shown
from the periodicity condition tb-x) =- -(x - 2i6i. that for suitable potentials this is actually the case). Further-

Let us concentrate on the ( i= i functions and let M, M more, Eq. j9a) implies that aug... is a i - j function in A.
denote the -4- 1 "left" eigenfunctions, while .N..V denote the In order to solve 8l, one needs to establish an analytic

- I "right" eigenfunctions. These eigenfunctions, in addi- connection or symmetry condition between N and .V. This
tion to solving 14), also satisfy the following boundary condi- follows from the relationship

* tions lions~~~ (ix, A N i x, - i e '  II)"

M-- I, .- e as x - N-,l, which is a consequence of

asx - w. ) G.(x,y,A)=G Ix,y, -Ae'' =  (121

The eigenfunctions 4, .14, .V, . satisfy the following Fred- Equation (8), using the above analytic properties of .
holm integral equations .N, and a, as well as Eq. (11), defines a Riemann-Hilbert

* (M~,A )~ (Iproblem in 4...(A . From this, the following integral equation

(x,A )i - is obtained Isee Appendix A):

+I. Gx,y,;A)uy) , dy, 6a •(,-)- I ' ( '.)

W (Nx. Y, A(eii
('x,2 / =I)-i) " 13i

(.v (y,'- ) whereG, _(x, y, (A Jt)ui y)[ y 1L dy, (6hb) ) ]btX).

where ba;fA , b(A I

G . (x, y, 4_(A i) The Gel'fand-Levitan-Marcenko equation given in Ref. 18

e". - 7) can be easily obtained by taking an appropriate Fourier
. transform of (13), supplied by the analytic information ( 1 1).

whre C = -contours Re (p 1/2]{ 1--We shall also need the following relationship, which is
where C.= are the contours Re (p i0). obtained from (13) asymptotically as a,.-o (see Appendix

The eigenfunctions 14, N, N are related through the A):
scattering equation

.(x, A I = a(A 3 (x,A i +- 0 (.) -, 1/26)b (A kN (x, A), u (x)= "J p(-7), d - i C,, ;

(8) /. -l ,'h/ y-x--i) ul~y.(
where u'(x)=ch ydy. (15)

1 If dyujy.Wy,tA); A.nd finally, the reality of ujx) implies that ulx) = u (' x)
u-(x) = u(x) + (u (x)).

Sb(A)* dyu(y (y,, e - a" "  (9) Equation (13) defines N in terms ofp, C,, A. and Eq. (15)
24-A )6 .-E. defines u in terms ofp, C., N. Hence Eqs. (13) and (15)

and define u '(x) in terms of p, C1, A,, the so-called scattering
data. However, the scattering data need only be evaluated at

(A))) 1 for A > 0, 9 (A = 0 for 2 < 0. time t = 0 (i.e., in terms of the initial data ulx, 0 only] since

The "bound states" correspond to those A, for which their evolution is known.

a,-* at)A)=0, I= 12.n, (10a) (0),

M,(x*M(x,,,) = b;A,)V(x..,)=b,,Vtx. (10b) CI(t) = C(O)exp (L [{ coth.3) - 1/5]t)t.

2. 7he mnverse scrattenng problem PiA, 0 =P1AOlexp [ii (A cothA6 - 116)t (16)
The above evolution of the scattering data follows easily

The solution of the inverse problem is based onfrom the -part 4b of the Lax pair.
Given aiA ), b (A ), and appropriate information about the
bound states, find .1, N, N. In order to view (8) as a Rie-
mann-Hilbert problem in the complex '.,(A Iplane, one S. The BO equation
needs to establish analyticity properties in 4.(A for the ei-
genfunctions M, ., N. The Kernels of the integral equations The following results can be found in Ref. 19.

satisfied by M, N are) + ) and ( - (functions, respectively, in
1. The direct scatte7nng problem_(A0-), i.e., they are analytically extendable in the appropri-

ate regions of the ;-.(A ) plane. Since the forcing in both cases The direct scattering problem of the BO equation is
is unity, Fredholm theory implies that the solutions ,14 and N based on the x part i 17a) of the "Lax pair":
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Lwmiw" - (w- -ol= -uw-, (17a =_tx.A), (26)-

,. -P2±w; - t, - xiu]-= w -pw , (17b)(26)

where where m.,R are i and I - functions, respectively, inA.
It turns out that ,*

[u 1 = _ u/2 4-!I 12ilHu. I17c t

Given u, Eq. 17a) defines a differential Riemann-Hilberr
problem in the complex x-plane; wo= w x) represent the bound- In order to view Eq. (221 as a Riemann-Hilbert problem

ary values of functions analytic in the upper ( + ) and lower in the complex A plane. one needs to establish analytic infor-

I - ) half x-plane, i.e., u; w (x) = iimo w(x + iy). mation about n and f. This follows from

The eigenfunctions m, mn, n, A satisfy the boundary con- , A e =PA, te

ditions

---, A -e' asx uiy)n(y 4y. (27)

n-I1, n-- ex asx-+ , (18x - JEquation (27) is a consequence of,,
and are characterized through the following Fredholm inte- an c of
gral equations: -- 1

3A 17A
mx A(28)

ix, A. )/ (ea-/ Using (28), one also finds that
*i y, A)gf x Y, A mujy ,A dy, (19a).!

,,. ( y,aA) im[ (x, A)-i+,x)/A- A,) =(x + ,)0 j . t29)

\a(x, 1 = + g_(x, y, A. )u y( )( :y,))dy, Equation (22), using (25H27), and (29), defines a nonlo-
A cal Riemann-Hilberr problem in the complex A plane which

(19b) is equivalent to the integral equation

whereg_, g- are the( + (and ( - (parts of sectionally holo-
morphic function n(x,A,t)= Jhtx, t, ), 8(lt)n(x, t, l)dl

glx,y, p ) = 11 - A (20) + Ox, t)h (x, t, ,A,) = u(x, t, A), (30)

and A denotes the complex extension of A, i.e., i__ (l,t~n~x,t,l)
t_ p_ e,<_, (x Y, ,(t)),P,(x,r- i tof

gX9py A)=_ p (21) x , r( A -A)

The eigenfunctions m, f, it are related through the scat- + i l A ,A (31)

tering equation

mix, A =ifx, A) + O (A (A )nix, A), (22) where

where

v(x, rA
a(A =if_ u(yjm(y,Ae-a'dy. (231 t ) . t(e~'-n+f,(l)ea)dl; f,(A)= ,-, -

(32a)

... * 7"he Inverse scattenngprolem h )x, t, A, I )-ee - -(A, e - I1d4, 1>0, (32b)

The solitons of the ILW equation correspond to "bound
states" which are generated from the zeros of a(A ). However, h (x, t, A, A,) eA - ' u(S, A e - - d
in Eq. t22) (which is the analog of (S)1, the coefficient of i is 1.
Hence the solitons of the BO equation are generated through -r e A a fl, t e - .) d
a different mechanism, the integral equations (19), in con- "d

trast to the integral equations 161, may have homogeneous 132cl
solutions 0, for some A,, where A, < 0, i.e., The following equation is also valid:

0x JX gjxAuiy)P,(y¢dy, A.<0. (24) [ul-= "J. 3U nlxA4 dAi -- iZPx1, 133)

The kernels of the integral equations for m, i are - ( and and assuming u real. ulxl = u 'ix) - (u (xl)*.%
- I functions respectively in A. Hence

Equations 130H 33) define (u] in terms of A,, y, ( A),C C, 0 X)
mix.A -) I m _{x, A , (25) f(A ). However, the scattering data need only be evaluated at

A A- time t =0, since their evolution is known from Iibl:
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(Aif) ;-(0), ',(t = 2t - ',(O)I;' L, Using Eqs. (35) for A > 0, together with the symmetry
-, t) = -,0)e~ :

', f( A,:l = f)A,0)e :' .  13l condition I 1) for the case A <0, one can take the limit of thescattering equation (81. Specifically,

III. THE LIMIT FROM THE ILW EQUATION TO THE SO _ a , - > 0, (38a.
EQUATION lima(- d(A, A<0 8b)

In this section, we will show how the IST scheme of the "(
BO equation can be obtained from the IST scheme of the lim b (A) = e - 60 (A), A >0, (39a)
ILW equation. lr 6 AA) = i d,

'S.- 2A.A. The direct scattering problem - "  , y. (39b) -
As noticed in Ref. 18, the limit 6 - w, A > 0, of the Lax

pair (4) goes directly to the system (19); the strps between where d (A): 1 iJ u(yj(y, -A)eaYdy, and 0 (A ) is de-
Imz----andmz= --2becometheupperandlowerhalf fined in (23). Then in the limit 6- c, Eq. (8) goes to Eq. (22)
z :-plane, and then w = (x) = lim_, W (x) are nothing but for A > 0, and it goes to
the boundary values of functions analytic in the upper ( + )
and lower ( -) half z-plane. (x, --A)=d(A)nx, -A) (40)

It is straightforward to show (see (B2)] that lim.,, G for A <0.
(x,y, '_.. )) =g (x,y, A ), A > 0, where the Green functions Finally, 138) and (39), together with (14) and (40), imply
G,, and g - are defined in 17) and (21), respectively, then the that
Jost functions of (17a) are solutions of the Fredholm equa-
tions (19) and can be obtained, for A > 0, in the following limp(A) =e- 3(-), A>0, (41a)

* way:
y lim& 6'(A)= irf( -2- ), A <0, (41b)

mix, )= linM (x, A) (35a) with f(A) defined in (27).

The solution of the inverse problem for the BO equation
Aix,A) limMw(x,A )e -  (35b) will be obtained taking the limit 5-= of Eq.(13). However,

in order to do that, we must still characterize the asympto-

n(x, A) = lim.N (x, A )e - ', (35c) tics of the bound states , = Aj(), j 1,2.n of the ILW
6m- equaton.

(x, A)= limN(x,A). (35d)
3--

8. The bound states
The analytic information about G (and, consequent-

" ly, about V) contained in I 11) and 1121 are apparently lost in As shown in Ref. 18 for every finite65 the/ ,'s are simple

the limit 6 - w, from which we find the identity g = g. zeros of a(A ) and lie on that portion of the imaginary axes

Nevertheless, one may show that taking the derivative of) 12) contained in the fundamental sheet of the .plane: A, ik,
. with respect to AL, 0<k, <ir/S.

In order to establish the asymptotics ofA., we will study
"G,(xy,-)=i(x-y)G(x,y.-)G,(x,y, theequationa=a a, 6) = Ofor large6 with the following

(36) ansatz:

and then taking the limit 6 - = of this equation, one gets A = (hr6)(a- + a',/6 (-- a'1)/6" 0(62)), (42)
* [see, (B3-B5)] the nontrivial equation 128). Analogously, by

rakingthe derivativeofq.6b)forN (x, - A ),enrichedby and the restriction 0<aj')< 1, which is a direct consequence

the property Ill), of the property 0 < k, < ,r/6.
*- Substituting ansatz (42) into the equation a, = 0 evalu-

(Nx,A )e- -) ated for large 6, one gets an equation in inverse powers of 3.
GI =f_" _',.ujytN(y' te- A-1dy In order to equate to zero the coefficients of the 0 ) 1) term,

- x Athe following conditions must be satisfied (see Appendix C):

f x -d a) = 1, (43)":" - GIX -Y. y i ) -'u1y(N(y,2 A 4 -a"- AJiy,

144)
""37) .M[ )x) = 64)x) . w"1ixl -, 0t6 -t ~.
,-. (37)

and then taking the limit 6-. , one gets the analytic con- fY . a

nection formula (27). This highly nontrivial formula is de- where
" rived at this stage as a consequence of the noncommutativity

of the two operators lim, and IdA. It will be rederived A, - 1/?a ' ; (45b)

later (perhaps in a more satisfactory way) from the scattering while, equating to zero the coefficient of the 0 (6 '(term, one
problem gets
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ulyly'fyldy = - 2iv i:, 146a) a - Ut2

where I I 3
- I w~yV;'U~dy. 13

v -=ili,/21 A yav' 46b 2i J- AN

As a consequence of result 43), the propertyk, <,-/6 implies *f' = .14_ v, I. !A .. satisfies the equation

that a',," (and then A. is negative, otherwise arbitrary.
Moreover ' (x) - G_(x. y, i.uty4Wlyf dy

A- A- ,, " 6 0- 0 ) > 1. 47)

*. Substituting the expansion 44) into Eq. (6al evaluated = G "_ (x, yiuVW yMdy, (54)

for large 6 and equating to zero the coefficients of the first

two terms, we get the integral equations satisfied by /,uJ(xi with G '.. (x, y) = G. {x, y, A. ) The asyptotics
. and b') "x): of G'_, see Appendix B)

IK# :!(x} 0. (8a1 G",{x'y) =g,(x,y, A,) O(6- ), 6>1 (55) ..
and the condition (D5) of the existence of solutions of equa-

*Ku'1 (x= I - jg x. y, A,ulyl' oty)dy, (48b) tion (54) for large 6, suggest the following ansatz:

where .6,'(x)(= 2 ft0 (x(+6f21 (XHOIl), 3>1. (56)

Substituting (56) into 1541, using (55) and (49cl we get, for the
K77)(x) * 77x - | gx y, A,)uIy)7LvYdy, (49a) first two orders in 6,

and (K=0.)(x) 0, (57a)

gx, y, A, ( = (v -, -- ga Ix, y, A,) -- i/4A, (49b) (K ii)](x) = fgg (x, Y, A,)u(ytou'J(y~dy

is the coefficient of the 0 (6 ')term in the expansion ofG (4x,
y, i..,, when 6>.1 [see (B6)]: -I* gi(x y,u ,)uyydy. (57b)

G_(x.y, A,) = gjx,y, A;) - (1/6)g'(x.y, A,) 0( 6). a, (x) is the solution of the homogeneous equation (24) with
(49c) eigenvalue A1 , then b2o, ) =/ d)(x(, g constant. Using this re-

Equation (48a) shows that the leading term of the ex- lationship, together with (49b), (28), and (D5), one gets. = iA

pansion of M. is a solution of the homogeneous equation (24), -, then,

corresponding to the eigenvalue i, -iY 1fX) is the solution of 6
the inhomogeneous equation 48b) and the necessary and aS 0

sufficient condition for such a solution to exist in [see (D5)] i6
ay' = l/(4A -), whereupon then v ,= i(i1r I). So Eq.- 0 (1), 6>1, (58)

!.b1 b comes and finally,

*K/,<1'(x)-' = ZJix-ygx'y,A)u'y),UO')(y4y. (50) c, =Ir/6+ 0 6-), ,6> 1. (59)

In both Eqs. (48a1 and (50), the solutions/ag'(x) and
/sfx) are defined up to a multiplicative constant that can be C. The inverse scattering problem

determined using Eqs. (45a) and (46a). We are now ready to take the limit 6-. of Eq. (13)
Formulas 42), (44), (145a), (47) allow us to evaluate the which is the inverse scattering scheme for the ILW equation.

limit ofc, = - ilbi/a)* -l a b) ()/a. (,)). Let us analytically extend Eq. (13) toA = -A.:

0- uiyl4, y)e- #-dy e + ,(X)_

wyli- 'y p1n N(x, L

-2i/l2,r-ia 6 "-- + iO

+ +01(-)= 1 -.0 -'1, 6>1, 511
C =. (60)

so, as a consequence, 
+ (6,

.v = .Jl/b, = 61,'(x) -+- 01), 6>1. (52)
Its limit when 6-w , evaluated using (42), (47), (59), (41), and

For definition 19), (35), is
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(x- (u !xi)*, the solution of the BO equation, from the scat-
' :__ tering data.

_______" (x) D. Time evolution
-. A - ,A, - Al In order to obtain the time evolution of the scattering

-, =:dam, we notice first of all that2,(t) = A (0),j = 1,2.n, then
where A(t t= j0) too. Moreover from (16), we get C(t) = C

-(t .I - -t/,- l/2-,, -i/2t,, 62) 10(1 -2,rAt/6 + O(6-2), 6>1, while, from (63) at r=O,
and C, (t) characterizes the second term of the expansion of we get C(O) = (1r/61(1 + C (0)/6 + 0(6 -)), 6>1.

C, for Large 6: Comparing these results with formula (63), we infer the
time evolution of C1 (t) and, through (62), the time evolution

C, (t)=ir/6)(1 + ,(t)16 +016- ), 6>1 (63) of tj(t):/(,

Asymptotically in x, Eq. (61) reads - irxg't)'(xl = 1, then Y( = (0"

A1 ) -Ix,'()x(, (64) + 2A~t, Y(0(* - Cj(0)16 + (I/2 ,.'rA)(1 - iir). (69)
where 0) (x is the solution of (24) with the property 6 3(,t)andf(A, tr)originate from twodifferent limits(A > Oand

A <0) ofp(A, t). Comparing the limit of Eq. (161,
"-* p(A,t) =p(A,O)e=' '(I + 0(6-')), 0, 6> 1,

So in terms of , (x), Eq. (61) becomes Eq. (31) and Eq. with formulas j41a and (41b), we infer that
S(Rt) = bA 3(A,O)eA , f(A,t) =f(A,0ea"  

(70)
u=), (y~dy 21 i. (65)

APPENDIX A
Let us consider now 2ER-; in this case Eq. (13) goes directly In this Appendix we will derive formulas (13) and (15)
to that characterize an alternative approach for solving the in-

R 2 VW'f nx1) 0 verse problem of the ILW equation, to that given in Ref. 18,,A)- j 1-2m (A l d= 1--i - 66 which is in terms of a Gelfand-Levitan- Marchenko equa-iO-, , - .

tion. While the two approaches are equivalent for the ILW
(see Appendix C), which implies that ,equation, it turns out that the one presented here is the most

1 .8(l)nix, I) dl- + i x (671 appropriate to describe the limit to the BO equation. Let us
~-- 2 1T ie -, divide the scattering equation (8) by a(gj); the function

M ( (/a(.,.) is analytic in the upper half!'- plane except forThe last choice for A is ZeR-; in this case, poles (the zeros of a); then

nix, _, ]e.X,_ 2n To -ln dl M(x"(_= . . i . (Al2, l ie a '.) = 1 - .x, , ) --- . - , (A ).-"

2 f) - 1n)x, -I -,) eAl

- 2,_ whereA _jx, ,-) is analytic in the upper g. half plane andY,
and C are defined in (lOb and (14), respectively.

= 1 + i -- O(6-), 6>. Expressing 0( ',. + l/2Z o (x, . in terms of its
A, , (- (and ( - (parts,

"_ ( ~ -/ Z of kg , . = U (x,," } U-(x,¢ _,( 2
Making use of(671, splitting dl into dl -- dl and ' + 1/24 (U - (A2)

expanding the corresponding integrands, we get U (x,,2= J (4 (A3)

ntx.A le - f()i(x, l)e -' "dl = 0, A > 0 168) and substituting all of this informatior. into (8), we getu _i x,-.a)= U -(x.;, and Eq. (13).
!see Appendix C, which is nothing but the integral form of Equation 15) is obtained by considering Eq. 13) for
the analytic connection formula 127). large _._. In order to do that. we must evaluate the asympto-

Formulas (661 and (681 are equivalent to the integral tics of .V ix. for large .
equation (301 and together with Eq. (311 they determine, in
principle, the nixl, i(xi, and 0 's, and thus contain all the GIx, y, = " " h0
information one needs to solve the inverse scattering prob- 4 i6 _ 26 1
lem associated with the BO equation. "L" ePly e

It is remarkable that these three equations are derived
from thesame Eq.113) when6-oo, in the threedifferent p- .+1/2)1_e d
situations = -A, AER', and AeR. _ - coth[(,/2ly - x -1 )11 +O 1"

Finally, the limit of (1S) goes directly to formulas (33), 46.
showing how to reconstruct u-(x), and then ulx = u (x) >l. (A4)
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Then. using Eq. 16bl, we get. -)x,-I -(I/._u-fxas G YA1 =
_--* ,and Eq. (13) yields Eq. tl15). 2-, I - 6( ' 11t2,5)

APPENDIX B - -- )

We will briefly discuss here the procedure used to " e,.-, Y)
evluate cer asymptotic calculations. As a prototype ex- 4 1 4

ample, consider the integral 4Aof 3 2

G (x,, "" A 1", hetdw

=- ~x-YJ B1 1),( -Ax )d

+ I e"Pq zOi
Using Cauchy's theorem, we may evaluate the order of mag- 21rA.

,nitude of the contributions about 0 and A, the two singulari- . )..

* ties of the integrand. Asymptotically in 5 they are (i/ X dp .0 - (6

2)e" and i/4A6, respectively. Then we split the inte- 0 1

gral p dp , fdp and we expand the corre- -g(Xy,,Aj)-(l/6)g,(x,y, +O(6-), 61, B6)

sponding integrands, the first term gives a 0 16-') contribu- APPENDIX C
tion and the second one gives g = )x, y, A ). So In this Appendix, we will discuss the asymptotic behav-

iorofnix,A ), mix,A ),,1(x,A ) whenA - 0. The sameideas will
G - (x, = g (x, y, ) 0 )16- ), 3>I. (B2) also be used to obtain equations (43H-45).

Let us consider function n(x, A ), solution of
Exactly the same procedure yields formula 55) and - .

" CI)
no -n

G=,(xy, A)=g=,(x,y,A)+-065-'), 6>1, (B3) iqh ]- indicates the( +) projection ofh ), or, equivalently, thesolution of

used in (36). The evaluation of G (x, y, - A )e A - "'in (36) s
requires more attention: nix, ) e-' g_(x,y )u(y)n ty )dy. (C2)

G2 x6y, _A , 4' ,, - +2A- I -e - 
3A Noticing that g_(x, y, A) - - 1/2-rln A asA-O, Eq. )C2)

, - -) will be satisfied at the 0(1) iff
nfx,A )-n/x)AnA, A-O, (C3)

- f 1 - - - ' dp where no(x) satisfies the normalization condition

u(y)notyvdy = 2,r. (C4)

A6.f e, - Y - Zo Substituting (C3) into (CI), we get
T- ,- (= L-! -I (-- 1 n'. = i~un,] (0)

Then Eq. (C5) and the normalization condition (C41 de-
X dp I - 0 (6-1. (B4) fine the coefficient no(x) of the leading term in the

asymptotic expansion of nix, A ) when A-.O. In particu-
Replacing A I - l/26withA ,with an exponentiallysmall lar, it is easy to show that (C5) and IC4) imply that hoaX)

Repacig;IA -1//~wth. wih n epoentaly sal - In x.
error; and rescaling p with 76 we finally get

In exactly the same way, it is possible to show that

. G ixy. -AeA- mix, A A )-nox(iln A, as A--O. !C6)

Moreover, using (C6) and 1C41, we can easily get

" dpil -0(6-) 2n(A)- IrzAn A)- - I/AIn A. A-0. C7)

Formulas (C7, as well as )C) and (C6), are implicitly

- ). BS) used to prove the validity of 167) and to show that the
" - - -B0) integrals contained in formulas (661 and (681 are well de-

fined.
The evaluation of G x, y, .) up to terms of order 6 -'is Formulas iC3 C61 supercede the formulas (24) in Ref.
performed as follows: 18 (the first of which is incorrect; however, only the or-
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der of magnitude of the limit A-.0 was used in Ref. IS. [the operator K is defined in i49ai], Fredholm theory says k
This indicates that J"_ u dx = 0 is not special in the that a solution exists iT
limit A-.O. -,

Let us now prove by contradiction that a"' = 1. Then let (b *xLFl x dx = 0, D2)

us suppose that 0 <a ' ) < I; it follows that .
1)I~-~.,O6~;~ = ra~j0e~ where v/ satisfies the equationK TbX =U 0,w here K is the

(C"11 6_2); rah e "adjoint operator of K:
2 J 6 2 sin (ira~j

and (K -h (x) = h (x) - uixJ g 1y - xi,Ah iydy. iD3)

G.xy,i- .A - " dp As a consequence of the equation K - t)1x = 0. we have
that

2wIn (i)" • b *(xF(x)dx fI C, u(yOx'dy] fxdx.
," (D4) .

Consequently using the same kind of arguments leading .-
to (C) and (C4), one can show that Eq. (6a) implies Then the condition "O*fx)dx60 implies

M )x, - -no, / with u(y)Mo, )dy = 2-t.
In C,61 I + C1  u(y)/. yldy= 0. (D5

Then
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